High frequency monitoring in high mountain lakes of the Spanish Sierra Nevada after intense Saharan aerosol inputs

Sampling event
最新版本 published by Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia on 12月 18, 2023 Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia

下載最新版本的 Darwin Core Archive (DwC-A) 資源,或資源詮釋資料的 EML 或 RTF 文字檔。

DwC-A資料集 下載 149 紀錄 在 English 中 (69 KB) - 更新頻率: 需要時
元數據EML檔 下載 在 English 中 (46 KB)
元數據RTF文字檔 下載 在 English 中 (24 KB)

說明

This dataset contains high frequency sampling of key parameters to ensure the collection of consistent data for the long-term records in four lakes of Sierra Nevada, Spain (Laguna de la Caldera, Laguna de Río Seco, Laguna Larga, and Laguna-embalse de las Yeguas). A feature that makes Sierra Nevada unique is that lakes undergoes high inputs of nutrient-rich aerosols due to their proximity to the Sahara. Sampling was carried out during the ice-free period of 2022 to monitor biological and biochemical impact of an unusual year of intense aerosol inputs from the Sahara that clouded Sierra Nevada’s shallow lakes “chocolate-coloured” at the beginning of the ice-free period. Parameters include water quality (nutrients, major cations and anions), biological (bacteria and zooplankton) and hydrological data collected in periodic sampling using water samplers, sediment traps and plankton nets. Multiparametric probes provided real-time and continuous data on multiple parameters simultaneously.

資料紀錄

此資源sampling event的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 149 筆紀錄。

亦存在 2 筆延伸集的資料表。延伸集中的紀錄補充核心集中紀錄的額外資訊。 每個延伸集資料表中資料筆數顯示如下。

Event (核心)
149
MeasurementOrFacts 
3334
Occurrence 
2412

此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。

版本

以下的表格只顯示可公開存取資源的已發布版本。

如何引用

研究者應依照以下指示引用此資源。:

Villar Argáiz M, Fernández Zambrano A, Garrido Cañete G, García Sánchez A, Bustamante L, Carrillo Lechuga P, Medina Sánchez J M, Corral Arredondo E, Pérez-Martínez C, Llodrà-Llabrés J, Llodrà Llabrés J M (2023). High frequency monitoring in high mountain lakes of the Spanish Sierra Nevada after intense Saharan aerosol inputs. Version 2.2. Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia. Samplingevent dataset. https://doi.org/10.15470/svyk2w

權利

研究者應尊重以下權利聲明。:

此資料的發布者及權利單位為 Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF 註冊

此資源已向GBIF註冊,並指定以下之GBIF UUID: a56f42c9-9201-49fd-bc0a-de452e74cae7。  Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia 發佈此資源,並經由GBIF Spain同意向GBIF註冊成為資料發佈者。

關鍵字

Samplingevent

聯絡資訊

Manuel Villar Argáiz
  • 元數據提供者
  • 出處
  • 連絡人
Assistant Professor
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958248317
Alejandra Fernández Zambrano
  • 元數據提供者
  • 出處
Field technician
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
Guillermo Garrido Cañete
  • 元數據提供者
  • 出處
Field technician
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
Alfredo García Sánchez
  • 元數據提供者
  • 出處
Field technician
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
Laura Bustamante
  • 元數據提供者
  • 出處
Field technician
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
Presentación Carrillo Lechuga
  • 元數據提供者
  • 出處
Professor
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958248320
Juan Manuel Medina Sánchez
  • 元數據提供者
  • 出處
Assistant Professor
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34958241000 ext.20061
Eulogio Corral Arredondo
  • 元數據提供者
Laboratory technician
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958241281
Carmen Pérez-Martínez
  • 元數據提供者
  • 出處
Professor
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958248317
Joana Llodrà-Llabrés
  • 出處
PhD Fellow
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958248317
Eulogio Corral Arredondo
  • 元數據提供者
Assistant Professor
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958241281
Joana Maria Llodrà Llabrés
  • 元數據提供者
PhD Fellow
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958248317
Andrea Ros Candeira
  • 連絡人
Research Assistant
Laboratory of Ecology, Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada
Avenida del Mediterráneo S/N
18006 Granada
Granada
ES
+34 958249748

地理涵蓋範圍

The Sierra Nevada is a mountain range located in the southern part of Spain, primarily within the autonomous community of Andalusia. It is one of the most extensive mountain ranges in Spain and covers a significant portion of the province of Granada, although it but it also extends into the neighboring province of Almería. The highest peak in the Sierra Nevada is Mulhacén, which stands at 3,479 meters (11,414 feet) above sea level, making it the highest mountain in mainland Spain. This mountain range is known for its stunning landscapes, including snow-capped peaks, and unique flora and fauna. But also, Sierra Nevada is known for hosting numerous high mountain lakes, some of which are called "lagunas" in Spanish. The most remarkable feature of these lakes is that, due to their low latitude, they are among the highest temporarily thawed glacial lakes on the continent. Most high lakes are oligotrophic (Chl a <1 μg L−1), highly transparent (>10% of photosynthetically active radiation [PAR, 400–700 nm] penetrate to maximum depth) and with low dissolved organic carbon (<1 mg C L−1). These pristine lakes are often nestled in scenic alpine settings and contribute to the region's natural beauty. Some of the most prominent high mountain lakes in Sierra Nevada are the ones included in this study: Laguna de la Caldera, Laguna de Río Seco, Laguna Larga and Laguna-embalse de las Yeguas.

界定座標範圍 緯度南界 經度西界 [37.052, -3.38], 緯度北界 經度東界 [37.059, -3.329]

分類群涵蓋範圍

This dataset includes a total of 2,412 occurrence records of bacteria and zooplankton, the latter represented by 15 families, 20 genera and 12 species.

Kingdom Bacteria
Phylum Arthropoda, Rotifera

時間涵蓋範圍

起始日期 / 結束日期 2022-06-09 / 2022-11-08

計畫資料

1-The Sierra Nevada Global-Change Observatory (https://obsnev.es/) is an ambitious project promoted by the Department of Sustainability, Environment and Blue Economy of the Regional Government of Andalusia with the scientific coordination of the University of Granada, in order to monitor the effects of global change in the Sierra Nevada protected area. For this purpose, the Sierra Nevada Global-Change Observatory has developed a monitoring programme and an information system for appropriate data management. 2-Smart EcoMountains (University of Granada-Sierra Nevada, Spain) is the Thematic Center on Mountain Ecosystems of the European Research Infrastructure LifeWatch-ERIC (https://smartecomountains.lifewatch.eu/). The main objective of the project is the long-term evaluation of mountain ecosystems' functions and services in the context of global change, using remote sensing, computing and new information and communication technologies advanced tools. The Smart EcoMountains project pursues three main objectives: 1) generate information on biodiversity, ecosystem services and global change in mountain ecosystems; 2) develop new technological tools and services that facilitate the exchange, localisation, access and analysis of data by scientists, in order to improve our knowledge of mountain ecosystems and the main global change processes affecting them; 3) develop tools to inform society about the most important global change processes affecting mountain biodiversity and ecosystem services, and support environmental managers and policymakers in science-based decision making. 3-REMOLADOX project, under the umbrella of the LifeWatch-ERIC Smart EcoMountais, is focussed on the study of high mountain lakes in Sierra Nevada, as ideal sites in which to capture signals of change in global stressors (precipitation, ultraviolet radiation, aeolian dust deposition or warming, among others), and serve as “crystal balls” for forecasting what is to come in lower altitudes in the future. 4-MIXOPLASCLIM project integrates observational and experimental studies, with a double generic objective: (i) Quantify the degree of contamination by plastics and their polluting derivatives (e.g., BPA), as well as the magnitude of the interaction between climatic change stressors and pollutants derived from plastics in the food webs of various Mediterranean aquatic ecosystems, including the high-mountain lakes of the Sierra Nevada. (ii) Develop a bioremediation tool based on mixotrophic algae-bacteria consortia to eliminate plastics and their contaminating derivatives. 5-LACEN (OAPN 2403S/2017) project pursues two main objectives related to this database: 1) develop an algorithm to know chlorophyll-a concentration of Sierra Nevada lakes through satellite images; 2) generate a database on Sierra Nevada lake features (herbivory and visitor pressure, nutrient concentration, morphometric features…) to explain the chlorophyll-a concentration and its changes in the lakes as a tool for science-based decision making.

計畫名稱 Several projects: 1-Sierra Nevada Global-Change Observatory | 2-Smart EcoMountains: Thematic Center on Mountain Ecosystem & Remote sensing, Deep learning-AI e-Services University of Granada-Sierra Nevada | 3-REsilience of high-MOuntain LAkes to chronic, pulsed and fluctuating Disturbances of global stress factors: Observational and eXperimental approaches: (REMOLADOX) | 4-Mixotrophs-bacteria consortia: bio-tools for the mitigation of plastic pollution under a scenario of global climate change in aquatic ecosystems (MIXOPLASCLIM) | 5-Lagos centinelas de cambio global en los Parques Nacionales: análisis multidisciplinar de los últimos 6000 años
辨識碼 1-OBSNEV | 2-LIFEWATCH-2019-10-UGR-4 | 3-PID2020-118872RB-I00 | 4-TED2021-131262B-I00 | 5-OAPN 2403S/2017
經費來源 This work was conducted under the agreement “Convenio de colaboración entre la Consejería de Sostenibilidad, Medio Ambiente y Economía Azul de la Junta de Andalucía y la Universidad de Granada para el desarrollo de actividades vinculadas al Observatorio de Cambio Global de Sierra Nevada, en el marco de la Red de Observatorios de Cambio Global de Andalucía” and the project Smart EcoMountains “Thematic Center on Mountain Ecosystem & Remote sensing, Deep learning-AI e-Services University of Granada-Sierra Nevada” (LifeWatch-2019-10-UGR-04), which has been co-funded by the Ministry of Science and Innovation through the ERDF funds from the Spanish Pluriregional Operational Program 2014-2020 (POPE), LifeWatch-ERIC action line.

參與計畫的人員:

Regino Zamora Rodríguez
Manuel Villar Argaiz
Juan Manuel Medina Sánchez
Carmen Pérez-Martínez
Presentación Carrillo Lechuga

取樣方法

1. Sampling: sampling was conducted over the entire ice-free period from late June to early November in 2022 with a total of 14 (Laguna de la Caldera), 15 (Laguna de Río Seco), 17 (Laguna-embalse de las Yeguas), and 6 (Laguna Larga) sampling days. The chemical and biological samples were taken with a Van Dorn sampler at the deepest point of the lake (discrete sampling depths) in Laguna de la Caldera and Laguna-embalse de las Yeguas, and with a integrated water sampler (integrated sample) in Laguna de Río Seco and Laguna Larga. Underwater irradiance–depth profiles were obtained for PAR (400–700 nm) using a waterproof spectrometer (Ocean Insights Inc). Multiparametric probes were used to measure in situ physico-chemical parameters (temperature, pH, dissolved oxygen, conductivity, and salinity). Subsamples of lake water were collected for total phosphorus (TP), total nitrogen (TN), and after filtration through GF/F Whatman filters for total dissolved phosphorus (TDP) and total dissolved nitrogen (TDN). Zooplankton samples were taken after sieving 10-12 L through a 40 µm mesh size and immediately preserving the zooplankton in 2% lugol. An aliquot of 1-2 L was transported cold and dark to the laboratory for bacteria, chlorophyll a, alkalinity, and major cation and anion determinations. 2. Nutrients, major cations/anions, and alkalinity: total nitrogen and total phosphorus samples were persulfate digested and measured as nitrate and as soluble reactive phosphorus, respectively, by means of standard spectrophotometric methods (APHA, 1998). These methods were also used to measure total dissolved nitrogen and total dissolved phosphorus after filtration through Whatman GF/F filters. Major cations and anions were measured in ion chromatography. Total alkalinity was measured by the acid tritation method (APHA, 1998). 3. Bacteria and zooplankton: for the quantification of bacteria aliquots were fixed with paraformaldehyde, stained with SYBR Green I DNA and determined using a Becton Dickinson FACScan flow cytometer and Yellow-green-1 µm beads (Lozano et al. 2022). Zooplankton were identified and counted with the aid of an inverted microscope. 4. Chlorophyll-a (chl-a) analysis: water samples were filtered through pre-combusted glass fibre filters (Whatman GF/F, pore size = 0.7 µm). Filters were frozen at -20ºC until the analysis. For analysis, chl-a was extracted with 7 ml 99% absolute ethanol for analysis during 24 h in refrigerated and dark conditions. Chl-a concentration was determined spectrophotometrically using a Perkin Elmer UV-Vis 25 spectrophotometer with 5-cm path-length cuvettes (Jeffrey & Humphrey, 1975; Ritchie, 2006). 5. Total solids: The water sample (Vol filter, between 300-500 mL) was filtered through precombusted (500°C) and preweighed GF/F filter (Pi filter), and dried for one hour at 105 °C. A volume of 250 ml of the filtrate (Vol beaker) collected in a preweighed beaker (Pi beaker) and dried in an oven (temperature was initially set at 95 °C to prevent the water from boiling, and when all the water had evaporated, further dried at 105 °C for one hour). Both, the beakers and filters were kept in the desiccator and allow them to cool to room temperature before reweighed (Pf beaker and Pf filter, respectively) (Elosegi & Sabater, 2009). To calculate the different fractions of total solids the following equations were applied: - Total suspended solids (TSS, g m-3) = (Pf filter – Pi filter) / (Vol filter) - Total dissolved solids (TDS, g m-3) = (Pf beaker – Pi beaker) / (Vol beaker) After the described weighing, the beakers and filters were burned in the muffle for 30 min at 500 °C, and reweighed (Pm beaker and Pm filter, respectively) to calculate volatile solids as: - Volatile suspended solids (VSS, g m-3) = (Pf filter – Pm filter) / (Vol filter) - Volatile dissolved solids (VDS, g m-3) = (Pf beaker – Pm beaker) / (Vol beaker) Total solids (TS) were calculated as: - TS = TSS + TDS 6. Sediment traps: to investigate the sinking flux of suspended solids (TSS), sediment traps were set in three of the four studied lakes. Each sediment trap was composed of two bottom-closed cylinders that allowed the acquisition of two field replicates. A sediment trap was deployed at 1 m below the surface water in the three lakes (Laguna de la Caldera, Laguna de Río Seco, Laguna-embalse de las Yeguas), and one additional trap was deployed at 8 m depth in Laguna-embalse de las Yeguas. The sediment traps consisted of twin-plexiglass cylinders, of 1.5 L volume each, which were sampled weekly to calculate sinking flux of total suspended solids (STSS) and volatile suspended solids (SVSS) according to the equations proposed by de Vicente et al. (2009): - STSS = (Pf – Pi) * VT * VF-1 * A-1 * T-1 where Pi is the initial weight of the precombusted GF/F filter, Pf is the filter weight alter filtering a known volume (VF) of the homogenized entrapped suspension; VT is the trap volume, 1.5 L; A is the collection area, 33.18 cm2; and T is the time of trap exposure. - SVSS = (Pf – Pm) * VT * VF-1 * A-1 * T-1 where Pf is filter weight after filtering a known volume (VF) of the homogenized entrapped suspension, Pm is the filter weight after ignition at 500°C for 30 min; VT is the trap volume, 1.5 L; A is the collection area, 33.18 cm2; and T is the time of trap exposure.

研究範圍 This dataset comprises weekly (Laguna de la Caldera, Laguna de Río Seco, and Laguna-embalse de las Yeguas) and fortnightly (Laguna Larga) lake monitoring in Spanish Sierra Nevada during the ice-free period of 2022. This was an anomalous year characterized by the input of very intense aerosol deposition events, a large part of which were dragged with the melting ice and snow into the lakes. See location in the map of the shallow lakes in https://lagunasdesierranevada.es/lagunas/
品質控管 1. Sampling: researchers and field technicians carried out the sampling, analysis and processing of the data. 2. Digitalisation: all data has been revised by experts before their introduction in the dataset. 3. Storage: data is stored in Linaria (https://linaria.obsnev.es/), the institutional data repository of the Sierra Nevada Global-Change Observatory. Linaria is a normalised database focused on ecology and biodiversity related-data and it is developed in a PostgreSQL/PostGIS relational database management system (RDBMS). 4. Taxonomic validation: scientific names were reviewed by experts and were checked with the GBIF backbone taxonomy using the species matching tool (https://www.gbif.org/tools/species-lookup). 5. Coordinates validation: the sampling event’ coordinates are the same as those that locate the lakes on this official website https://lagunasdesierranevada.es/lagunas/. 6. Standardisation: the standardisation to Darwin Core was done according to the practices recommended by the TDWG guidelines (https://dwc.tdwg.org/terms/).

方法步驟描述:

  1. 1. Field sampling and measurement of environmental variables (see Sampling Description section). 2. Sampling processing in the laboratory (see Sampling Description section). 3. Data is stored in Linaria (https://linaria.obsnev.es/), the institutional data repository of the Sierra Nevada Global-Change Observatory. 4. The dataset was standardised to the Darwin Core structure (De Pooter et al., 2017) as sampling event data. It contains, specifically: 149 events (53 parent events and 96 child events), 2,412 occurrences, and 3,339 records of associated measurements (32 variables). The parent events represent the integrated samplings, whereas the child events the samplings at different depths. The Darwin Core elements included in the Event Core are: eventID, modified, language, institutionCode, ownerInstitutionCode, datasetName, license, eventDate, year, month, day, continent, country, countryCode, highergeography, waterBody, minimumElevationInMeters, maximumElevationInMeters, samplingProtocol, eventRemarks, decimalLatitude, decimalLongitude, geodeticDatum. For the Occurrence Extension are: occurrenceID, catalogNumber, collectionCode, eventID, eventDate, organismQuantity, organismQuantityType, basisOfRecord, scientificName, taxonRank, kingdom, phylum, class, order, family, genus, specificEpithet, scientificNameAuthorship, occurrenceStatus. For the Measurement or Fact Extension table, the Darwin Core elements included are: measurementID, eventID, measurementType, measurementValue, measurementUnit, measurementMethod. For each child event, the sampling depth is indicated in meters in the eventRemarks element. Special values in the measurementValue element: “BDL” (Below Detection Limit). 5. The resulting dataset was published through the Integrated Publishing Toolkit of the Spanish node of the Global Biodiversity Information Facility (GBIF) (http://ipt.gbif.es).

引用文獻

  1. APHA, American Public Health Association (1998). Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington DC.
  2. De Pooter, D., Appeltans, W., Bailly, N., Bristol, S., Deneudt, K., Eliezer, M., Fujioka, E., Giorgetti, A., Goldstein, P., Lewis, M., Lipizer, M., Mackay, K., Marin, M., Moncoiffé, G., Nikolopoulou, S., Provoost, P., Rauch, S., Roubicek, A., Torres, C., van de Putte, A., … Hernandez, F. (2017). Toward a new data standard for combined marine biological and environmental datasets - expanding OBIS beyond species occurrences. Biodiversity data journal, (5), e10989. https://doi.org/10.3897/BDJ.5.e10989
  3. de Vicente, I., Guerrero, F., Jiménez-Gómez, F., Cruz-Pizarro, L. (2009). Settling and resuspended particles: A source or sink of phosphate in two contrasting oligotrophic high mountain lakes? C. R. Geoscience 342: 46-52. https:// doi:10.1016/j.crte.2009.10.004
  4. Elosegi, A., Sabater, S. (2009). Concepto y técnicas en ecología fluvial. Fundación BBVA. ISBN: 978-84-96515-87-1.
  5. Lozano, I. L., González-Olalla, J. M., Medina Sánchez, J. M. (2022). New insights for the renewed phytoplankton-bacteria coupling concept: the role of the trophic web. Microbial Ecology https://doi.org/10.1007/s00248-022-02159-6
  6. Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis research, 89, 27-41. https://doi.org/10.1007/s11120-006-9065-9
  7. Jeffrey S.W. & Humphrey G.F. (1975) New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167, 191–194.

額外的詮釋資料

替代的識別碼 10.15470/svyk2w
a56f42c9-9201-49fd-bc0a-de452e74cae7
https://ipt.gbif.es/resource?r=sn_lakes_int