High frequency monitoring in high mountain lakes of the Spanish Sierra Nevada after intense Saharan aerosol inputs

サンプリング イベント
最新バージョン Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia により出版 12月 18, 2023 Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia

DwC-A形式のリソース データまたは EML / RTF 形式のリソース メタデータの最新バージョンをダウンロード:

DwC ファイルとしてのデータ ダウンロード 149 レコード English で (69 KB) - 更新頻度: as needed
EML ファイルとしてのメタデータ ダウンロード English で (46 KB)
RTF ファイルとしてのメタデータ ダウンロード English で (24 KB)

説明

This dataset contains high frequency sampling of key parameters to ensure the collection of consistent data for the long-term records in four lakes of Sierra Nevada, Spain (Laguna de la Caldera, Laguna de Río Seco, Laguna Larga, and Laguna-embalse de las Yeguas). A feature that makes Sierra Nevada unique is that lakes undergoes high inputs of nutrient-rich aerosols due to their proximity to the Sahara. Sampling was carried out during the ice-free period of 2022 to monitor biological and biochemical impact of an unusual year of intense aerosol inputs from the Sahara that clouded Sierra Nevada’s shallow lakes “chocolate-coloured” at the beginning of the ice-free period. Parameters include water quality (nutrients, major cations and anions), biological (bacteria and zooplankton) and hydrological data collected in periodic sampling using water samplers, sediment traps and plankton nets. Multiparametric probes provided real-time and continuous data on multiple parameters simultaneously.

データ レコード

この sampling event リソース内のデータは、1 つまたは複数のデータ テーブルとして生物多様性データを共有するための標準化された形式であるダーウィン コア アーカイブ (DwC-A) として公開されています。 コア データ テーブルには、149 レコードが含まれています。

拡張データ テーブルは2 件存在しています。拡張レコードは、コアのレコードについての追加情報を提供するものです。 各拡張データ テーブル内のレコード数を以下に示します。

Event (コア)
149
MeasurementOrFacts 
3334
Occurrence 
2412

この IPT はデータをアーカイブし、データ リポジトリとして機能します。データとリソースのメタデータは、 ダウンロード セクションからダウンロードできます。 バージョン テーブルから公開可能な他のバージョンを閲覧でき、リソースに加えられた変更を知ることができます。

バージョン

次の表は、公にアクセス可能な公開バージョンのリソースのみ表示しています。

引用方法

研究者はこの研究内容を以下のように引用する必要があります。:

Villar Argáiz M, Fernández Zambrano A, Garrido Cañete G, García Sánchez A, Bustamante L, Carrillo Lechuga P, Medina Sánchez J M, Corral Arredondo E, Pérez-Martínez C, Llodrà-Llabrés J, Llodrà Llabrés J M (2023). High frequency monitoring in high mountain lakes of the Spanish Sierra Nevada after intense Saharan aerosol inputs. Version 2.2. Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia. Samplingevent dataset. https://doi.org/10.15470/svyk2w

権利

研究者は権利に関する下記ステートメントを尊重する必要があります。:

パブリッシャーとライセンス保持者権利者は Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF登録

このリソースをはGBIF と登録されており GBIF UUID: a56f42c9-9201-49fd-bc0a-de452e74cae7が割り当てられています。   GBIF Spain によって承認されたデータ パブリッシャーとして GBIF に登録されているSierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia が、このリソースをパブリッシュしました。

キーワード

Samplingevent

連絡先

Manuel Villar Argáiz
  • メタデータ提供者
  • 最初のデータ採集者
  • 連絡先
Assistant Professor
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958248317
Alejandra Fernández Zambrano
  • メタデータ提供者
  • 最初のデータ採集者
Field technician
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
Guillermo Garrido Cañete
  • メタデータ提供者
  • 最初のデータ採集者
Field technician
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
Alfredo García Sánchez
  • メタデータ提供者
  • 最初のデータ採集者
Field technician
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
Laura Bustamante
  • メタデータ提供者
  • 最初のデータ採集者
Field technician
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
Presentación Carrillo Lechuga
  • メタデータ提供者
  • 最初のデータ採集者
Professor
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958248320
Juan Manuel Medina Sánchez
  • メタデータ提供者
  • 最初のデータ採集者
Assistant Professor
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34958241000 ext.20061
Eulogio Corral Arredondo
  • メタデータ提供者
Laboratory technician
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958241281
Carmen Pérez-Martínez
  • メタデータ提供者
  • 最初のデータ採集者
Professor
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958248317
Joana Llodrà-Llabrés
  • 最初のデータ採集者
PhD Fellow
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958248317
Eulogio Corral Arredondo
  • メタデータ提供者
Assistant Professor
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958241281
Joana Maria Llodrà Llabrés
  • メタデータ提供者
PhD Fellow
University of Granada
Avenida de la Fuente Nueva S/N
18071 Granada
Granada
ES
+34 958248317
Andrea Ros Candeira
  • 連絡先
Research Assistant
Laboratory of Ecology, Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada
Avenida del Mediterráneo S/N
18006 Granada
Granada
ES
+34 958249748

地理的範囲

The Sierra Nevada is a mountain range located in the southern part of Spain, primarily within the autonomous community of Andalusia. It is one of the most extensive mountain ranges in Spain and covers a significant portion of the province of Granada, although it but it also extends into the neighboring province of Almería. The highest peak in the Sierra Nevada is Mulhacén, which stands at 3,479 meters (11,414 feet) above sea level, making it the highest mountain in mainland Spain. This mountain range is known for its stunning landscapes, including snow-capped peaks, and unique flora and fauna. But also, Sierra Nevada is known for hosting numerous high mountain lakes, some of which are called "lagunas" in Spanish. The most remarkable feature of these lakes is that, due to their low latitude, they are among the highest temporarily thawed glacial lakes on the continent. Most high lakes are oligotrophic (Chl a <1 μg L−1), highly transparent (>10% of photosynthetically active radiation [PAR, 400–700 nm] penetrate to maximum depth) and with low dissolved organic carbon (<1 mg C L−1). These pristine lakes are often nestled in scenic alpine settings and contribute to the region's natural beauty. Some of the most prominent high mountain lakes in Sierra Nevada are the ones included in this study: Laguna de la Caldera, Laguna de Río Seco, Laguna Larga and Laguna-embalse de las Yeguas.

座標(緯度経度) 南 西 [37.052, -3.38], 北 東 [37.059, -3.329]

生物分類学的範囲

This dataset includes a total of 2,412 occurrence records of bacteria and zooplankton, the latter represented by 15 families, 20 genera and 12 species.

Kingdom Bacteria
Phylum Arthropoda, Rotifera

時間的範囲

開始日 / 終了日 2022-06-09 / 2022-11-08

プロジェクトデータ

1-The Sierra Nevada Global-Change Observatory (https://obsnev.es/) is an ambitious project promoted by the Department of Sustainability, Environment and Blue Economy of the Regional Government of Andalusia with the scientific coordination of the University of Granada, in order to monitor the effects of global change in the Sierra Nevada protected area. For this purpose, the Sierra Nevada Global-Change Observatory has developed a monitoring programme and an information system for appropriate data management. 2-Smart EcoMountains (University of Granada-Sierra Nevada, Spain) is the Thematic Center on Mountain Ecosystems of the European Research Infrastructure LifeWatch-ERIC (https://smartecomountains.lifewatch.eu/). The main objective of the project is the long-term evaluation of mountain ecosystems' functions and services in the context of global change, using remote sensing, computing and new information and communication technologies advanced tools. The Smart EcoMountains project pursues three main objectives: 1) generate information on biodiversity, ecosystem services and global change in mountain ecosystems; 2) develop new technological tools and services that facilitate the exchange, localisation, access and analysis of data by scientists, in order to improve our knowledge of mountain ecosystems and the main global change processes affecting them; 3) develop tools to inform society about the most important global change processes affecting mountain biodiversity and ecosystem services, and support environmental managers and policymakers in science-based decision making. 3-REMOLADOX project, under the umbrella of the LifeWatch-ERIC Smart EcoMountais, is focussed on the study of high mountain lakes in Sierra Nevada, as ideal sites in which to capture signals of change in global stressors (precipitation, ultraviolet radiation, aeolian dust deposition or warming, among others), and serve as “crystal balls” for forecasting what is to come in lower altitudes in the future. 4-MIXOPLASCLIM project integrates observational and experimental studies, with a double generic objective: (i) Quantify the degree of contamination by plastics and their polluting derivatives (e.g., BPA), as well as the magnitude of the interaction between climatic change stressors and pollutants derived from plastics in the food webs of various Mediterranean aquatic ecosystems, including the high-mountain lakes of the Sierra Nevada. (ii) Develop a bioremediation tool based on mixotrophic algae-bacteria consortia to eliminate plastics and their contaminating derivatives. 5-LACEN (OAPN 2403S/2017) project pursues two main objectives related to this database: 1) develop an algorithm to know chlorophyll-a concentration of Sierra Nevada lakes through satellite images; 2) generate a database on Sierra Nevada lake features (herbivory and visitor pressure, nutrient concentration, morphometric features…) to explain the chlorophyll-a concentration and its changes in the lakes as a tool for science-based decision making.

タイトル Several projects: 1-Sierra Nevada Global-Change Observatory | 2-Smart EcoMountains: Thematic Center on Mountain Ecosystem & Remote sensing, Deep learning-AI e-Services University of Granada-Sierra Nevada | 3-REsilience of high-MOuntain LAkes to chronic, pulsed and fluctuating Disturbances of global stress factors: Observational and eXperimental approaches: (REMOLADOX) | 4-Mixotrophs-bacteria consortia: bio-tools for the mitigation of plastic pollution under a scenario of global climate change in aquatic ecosystems (MIXOPLASCLIM) | 5-Lagos centinelas de cambio global en los Parques Nacionales: análisis multidisciplinar de los últimos 6000 años
識別子 1-OBSNEV | 2-LIFEWATCH-2019-10-UGR-4 | 3-PID2020-118872RB-I00 | 4-TED2021-131262B-I00 | 5-OAPN 2403S/2017
ファンデイング This work was conducted under the agreement “Convenio de colaboración entre la Consejería de Sostenibilidad, Medio Ambiente y Economía Azul de la Junta de Andalucía y la Universidad de Granada para el desarrollo de actividades vinculadas al Observatorio de Cambio Global de Sierra Nevada, en el marco de la Red de Observatorios de Cambio Global de Andalucía” and the project Smart EcoMountains “Thematic Center on Mountain Ecosystem & Remote sensing, Deep learning-AI e-Services University of Granada-Sierra Nevada” (LifeWatch-2019-10-UGR-04), which has been co-funded by the Ministry of Science and Innovation through the ERDF funds from the Spanish Pluriregional Operational Program 2014-2020 (POPE), LifeWatch-ERIC action line.

プロジェクトに携わる要員:

Regino Zamora Rodríguez
Manuel Villar Argaiz
Juan Manuel Medina Sánchez
Carmen Pérez-Martínez
Presentación Carrillo Lechuga

収集方法

1. Sampling: sampling was conducted over the entire ice-free period from late June to early November in 2022 with a total of 14 (Laguna de la Caldera), 15 (Laguna de Río Seco), 17 (Laguna-embalse de las Yeguas), and 6 (Laguna Larga) sampling days. The chemical and biological samples were taken with a Van Dorn sampler at the deepest point of the lake (discrete sampling depths) in Laguna de la Caldera and Laguna-embalse de las Yeguas, and with a integrated water sampler (integrated sample) in Laguna de Río Seco and Laguna Larga. Underwater irradiance–depth profiles were obtained for PAR (400–700 nm) using a waterproof spectrometer (Ocean Insights Inc). Multiparametric probes were used to measure in situ physico-chemical parameters (temperature, pH, dissolved oxygen, conductivity, and salinity). Subsamples of lake water were collected for total phosphorus (TP), total nitrogen (TN), and after filtration through GF/F Whatman filters for total dissolved phosphorus (TDP) and total dissolved nitrogen (TDN). Zooplankton samples were taken after sieving 10-12 L through a 40 µm mesh size and immediately preserving the zooplankton in 2% lugol. An aliquot of 1-2 L was transported cold and dark to the laboratory for bacteria, chlorophyll a, alkalinity, and major cation and anion determinations. 2. Nutrients, major cations/anions, and alkalinity: total nitrogen and total phosphorus samples were persulfate digested and measured as nitrate and as soluble reactive phosphorus, respectively, by means of standard spectrophotometric methods (APHA, 1998). These methods were also used to measure total dissolved nitrogen and total dissolved phosphorus after filtration through Whatman GF/F filters. Major cations and anions were measured in ion chromatography. Total alkalinity was measured by the acid tritation method (APHA, 1998). 3. Bacteria and zooplankton: for the quantification of bacteria aliquots were fixed with paraformaldehyde, stained with SYBR Green I DNA and determined using a Becton Dickinson FACScan flow cytometer and Yellow-green-1 µm beads (Lozano et al. 2022). Zooplankton were identified and counted with the aid of an inverted microscope. 4. Chlorophyll-a (chl-a) analysis: water samples were filtered through pre-combusted glass fibre filters (Whatman GF/F, pore size = 0.7 µm). Filters were frozen at -20ºC until the analysis. For analysis, chl-a was extracted with 7 ml 99% absolute ethanol for analysis during 24 h in refrigerated and dark conditions. Chl-a concentration was determined spectrophotometrically using a Perkin Elmer UV-Vis 25 spectrophotometer with 5-cm path-length cuvettes (Jeffrey & Humphrey, 1975; Ritchie, 2006). 5. Total solids: The water sample (Vol filter, between 300-500 mL) was filtered through precombusted (500°C) and preweighed GF/F filter (Pi filter), and dried for one hour at 105 °C. A volume of 250 ml of the filtrate (Vol beaker) collected in a preweighed beaker (Pi beaker) and dried in an oven (temperature was initially set at 95 °C to prevent the water from boiling, and when all the water had evaporated, further dried at 105 °C for one hour). Both, the beakers and filters were kept in the desiccator and allow them to cool to room temperature before reweighed (Pf beaker and Pf filter, respectively) (Elosegi & Sabater, 2009). To calculate the different fractions of total solids the following equations were applied: - Total suspended solids (TSS, g m-3) = (Pf filter – Pi filter) / (Vol filter) - Total dissolved solids (TDS, g m-3) = (Pf beaker – Pi beaker) / (Vol beaker) After the described weighing, the beakers and filters were burned in the muffle for 30 min at 500 °C, and reweighed (Pm beaker and Pm filter, respectively) to calculate volatile solids as: - Volatile suspended solids (VSS, g m-3) = (Pf filter – Pm filter) / (Vol filter) - Volatile dissolved solids (VDS, g m-3) = (Pf beaker – Pm beaker) / (Vol beaker) Total solids (TS) were calculated as: - TS = TSS + TDS 6. Sediment traps: to investigate the sinking flux of suspended solids (TSS), sediment traps were set in three of the four studied lakes. Each sediment trap was composed of two bottom-closed cylinders that allowed the acquisition of two field replicates. A sediment trap was deployed at 1 m below the surface water in the three lakes (Laguna de la Caldera, Laguna de Río Seco, Laguna-embalse de las Yeguas), and one additional trap was deployed at 8 m depth in Laguna-embalse de las Yeguas. The sediment traps consisted of twin-plexiglass cylinders, of 1.5 L volume each, which were sampled weekly to calculate sinking flux of total suspended solids (STSS) and volatile suspended solids (SVSS) according to the equations proposed by de Vicente et al. (2009): - STSS = (Pf – Pi) * VT * VF-1 * A-1 * T-1 where Pi is the initial weight of the precombusted GF/F filter, Pf is the filter weight alter filtering a known volume (VF) of the homogenized entrapped suspension; VT is the trap volume, 1.5 L; A is the collection area, 33.18 cm2; and T is the time of trap exposure. - SVSS = (Pf – Pm) * VT * VF-1 * A-1 * T-1 where Pf is filter weight after filtering a known volume (VF) of the homogenized entrapped suspension, Pm is the filter weight after ignition at 500°C for 30 min; VT is the trap volume, 1.5 L; A is the collection area, 33.18 cm2; and T is the time of trap exposure.

Study Extent This dataset comprises weekly (Laguna de la Caldera, Laguna de Río Seco, and Laguna-embalse de las Yeguas) and fortnightly (Laguna Larga) lake monitoring in Spanish Sierra Nevada during the ice-free period of 2022. This was an anomalous year characterized by the input of very intense aerosol deposition events, a large part of which were dragged with the melting ice and snow into the lakes. See location in the map of the shallow lakes in https://lagunasdesierranevada.es/lagunas/
Quality Control 1. Sampling: researchers and field technicians carried out the sampling, analysis and processing of the data. 2. Digitalisation: all data has been revised by experts before their introduction in the dataset. 3. Storage: data is stored in Linaria (https://linaria.obsnev.es/), the institutional data repository of the Sierra Nevada Global-Change Observatory. Linaria is a normalised database focused on ecology and biodiversity related-data and it is developed in a PostgreSQL/PostGIS relational database management system (RDBMS). 4. Taxonomic validation: scientific names were reviewed by experts and were checked with the GBIF backbone taxonomy using the species matching tool (https://www.gbif.org/tools/species-lookup). 5. Coordinates validation: the sampling event’ coordinates are the same as those that locate the lakes on this official website https://lagunasdesierranevada.es/lagunas/. 6. Standardisation: the standardisation to Darwin Core was done according to the practices recommended by the TDWG guidelines (https://dwc.tdwg.org/terms/).

Method step description:

  1. 1. Field sampling and measurement of environmental variables (see Sampling Description section). 2. Sampling processing in the laboratory (see Sampling Description section). 3. Data is stored in Linaria (https://linaria.obsnev.es/), the institutional data repository of the Sierra Nevada Global-Change Observatory. 4. The dataset was standardised to the Darwin Core structure (De Pooter et al., 2017) as sampling event data. It contains, specifically: 149 events (53 parent events and 96 child events), 2,412 occurrences, and 3,339 records of associated measurements (32 variables). The parent events represent the integrated samplings, whereas the child events the samplings at different depths. The Darwin Core elements included in the Event Core are: eventID, modified, language, institutionCode, ownerInstitutionCode, datasetName, license, eventDate, year, month, day, continent, country, countryCode, highergeography, waterBody, minimumElevationInMeters, maximumElevationInMeters, samplingProtocol, eventRemarks, decimalLatitude, decimalLongitude, geodeticDatum. For the Occurrence Extension are: occurrenceID, catalogNumber, collectionCode, eventID, eventDate, organismQuantity, organismQuantityType, basisOfRecord, scientificName, taxonRank, kingdom, phylum, class, order, family, genus, specificEpithet, scientificNameAuthorship, occurrenceStatus. For the Measurement or Fact Extension table, the Darwin Core elements included are: measurementID, eventID, measurementType, measurementValue, measurementUnit, measurementMethod. For each child event, the sampling depth is indicated in meters in the eventRemarks element. Special values in the measurementValue element: “BDL” (Below Detection Limit). 5. The resulting dataset was published through the Integrated Publishing Toolkit of the Spanish node of the Global Biodiversity Information Facility (GBIF) (http://ipt.gbif.es).

書誌情報の引用

  1. APHA, American Public Health Association (1998). Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington DC.
  2. De Pooter, D., Appeltans, W., Bailly, N., Bristol, S., Deneudt, K., Eliezer, M., Fujioka, E., Giorgetti, A., Goldstein, P., Lewis, M., Lipizer, M., Mackay, K., Marin, M., Moncoiffé, G., Nikolopoulou, S., Provoost, P., Rauch, S., Roubicek, A., Torres, C., van de Putte, A., … Hernandez, F. (2017). Toward a new data standard for combined marine biological and environmental datasets - expanding OBIS beyond species occurrences. Biodiversity data journal, (5), e10989. https://doi.org/10.3897/BDJ.5.e10989
  3. de Vicente, I., Guerrero, F., Jiménez-Gómez, F., Cruz-Pizarro, L. (2009). Settling and resuspended particles: A source or sink of phosphate in two contrasting oligotrophic high mountain lakes? C. R. Geoscience 342: 46-52. https:// doi:10.1016/j.crte.2009.10.004
  4. Elosegi, A., Sabater, S. (2009). Concepto y técnicas en ecología fluvial. Fundación BBVA. ISBN: 978-84-96515-87-1.
  5. Lozano, I. L., González-Olalla, J. M., Medina Sánchez, J. M. (2022). New insights for the renewed phytoplankton-bacteria coupling concept: the role of the trophic web. Microbial Ecology https://doi.org/10.1007/s00248-022-02159-6
  6. Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis research, 89, 27-41. https://doi.org/10.1007/s11120-006-9065-9
  7. Jeffrey S.W. & Humphrey G.F. (1975) New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167, 191–194.

追加のメタデータ

代替識別子 10.15470/svyk2w
a56f42c9-9201-49fd-bc0a-de452e74cae7
https://ipt.gbif.es/resource?r=sn_lakes_int