Dataset of Passerine bird communities in a mediterranean high mountain (Sierra Nevada, Spain)

出現紀錄
最新版本 published by Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia on 11月 30, 2018 Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia

下載最新版本的 Darwin Core Archive (DwC-A) 資源,或資源詮釋資料的 EML 或 RTF 文字檔。

DwC-A資料集 下載 27,847 紀錄 在 English 中 (826 KB) - 更新頻率: 其他更新週期
元數據EML檔 下載 在 English 中 (53 KB)
元數據RTF文字檔 下載 在 English 中 (38 KB)

說明

We describe a dataset of Passerine bird communities in Sierra Nevada, a Mediterranean high-mountain located in southern Spain. The dataset includes occurrences data from bird surveys carried out in four representative ecosystem types of Sierra Nevada from 2008 to 2015. For each contact both birds number and distance to transect line were recorded. A total of 27847 occurrences records were collected and 55694 measurements recorded. All records belong to Passeriformes order. 16 families and 44 genera were collected. Most of the taxa of the dataset are included in the European Red List. This dataset belongs to the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

資料紀錄

此資源出現紀錄的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 27,847 筆紀錄。

亦存在 1 筆延伸集的資料表。延伸集中的紀錄補充核心集中紀錄的額外資訊。 每個延伸集資料表中資料筆數顯示如下。

Occurrence (核心)
27847
MeasurementOrFacts 
55694

此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。

版本

以下的表格只顯示可公開存取資源的已發布版本。

如何引用

研究者應依照以下指示引用此資源。:

iEcolab, University of Granada-Andalusian Environmental Center (Andalusian Institute for Earth System Research) (2015) Passerine bird communities in a high mountain (Sierra Nevada, Spain). 27847 data records. Contributed by University of Granada, OBSNEV, Agencia de Medio Ambiente y Agua de Andalucía, Archila Gallegos F, Arias Navarro A, Barea-Azcón JM, Bueno de la Rosa V; Cobos L; Contreras Parody F, Debén Duarte C, Foronda J, Galdo Fuentes P, Hernández Soto I, Lopera E, López Martínez A, López-Sanjuán R, Lozano Rubio AJ; Marín Escribano JM; Martín Jaramillo J; Martos García C, Morillas Fernández D, Pulido Poyal C, Rodríguez G. Online at http://www.gbif. es/ipt/resource.do?r=passerine

權利

研究者應尊重以下權利聲明。:

此資料的發布者及權利單位為 Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia。 This work is licensed under a Creative Commons Attribution Non Commercial (CC-BY-NC 4.0) License.

GBIF 註冊

此資源已向GBIF註冊,並指定以下之GBIF UUID: bb1c7420-fbb5-46e2-87ad-658081360694。  Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia 發佈此資源,並經由GBIF Spain同意向GBIF註冊成為資料發佈者。

關鍵字

Occurrence; Observation; Passerine birds; Sierra Nevada (Spain); global change monitoring; mediterranean high-mountain; abundance

聯絡資訊

José Miguel Barea-Azcón
  • 出處
  • 連絡人
Researcher
Agencia de Medio Ambiente y Agua, Consejería de Medio Ambiente y Ordenación del Territorio (Junta de Andalucía)
C/ Joaquina Eguaras 10
18013 Granada
ES
Antonio Jesús Pérez-Luque
  • 元數據提供者
  • 作者
  • 出處
  • 連絡人
Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
18006 Granada
ES
+34 958 249748
Francisco Javier Bonet García
  • 連絡人
Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
18006 Granada
ES
Franciso Javier Bonet-García
  • 作者
Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
18006 Granada
ES
+34 958 249748
José Miguel Barea-Azón
  • 作者
Researcher
Agencia de Medio Ambiente y Agua, Consejería de Medio Ambiente y Ordenación del Territorio (Junta de Andalucía)
C/ Joaquina Eguaras 10
18013 Granada
ES
Dolores Álvarez-Riuz
  • 作者
Master's Student
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avenida del Mediterráneo s/n
18006 Granada
ES
Regino Jesús Zamora Rodríguez
  • 作者
Professor. Researcher
Grupo de Ecología Terrestre, Departamento de Ecología, Universidad de Granada
Facultad de Ciencias, Campus de Fuentenueva s/n
18071 Granada
Granada
ES

地理涵蓋範圍

Sierra Nevada (Andalusia, SE Spain), is a mountainous region with an altitudinal range between 860 m and 3482 m a.s.l. covering more than 2000 km2 (Figure 1). The climate is Mediterranean, characterized by cold winters and hot summers, with pronounced summer drought (July-August). The annual average temperature decreases in altitude from 12–16°C below 1500 m to 0°C above 3000 m a.s.l., and the annual average precipitation is about 600 mm. Additionally, the complex orography of the mountains causes strong climatic contrasts between the sunny, dry south-facing slopes and the shaded, wetter north-facing slopes. Annual precipitation ranges from less than 250 mm in the lowest parts of the mountain range to more than 700 mm in the summit areas. Winter precipitation is mainly in the form of snow above 2000 m of altitude. This mountain area comprises 27 habitat types from the Habitat Directive. Sierra Nevada protected area contains 72 animal species (44 breeding birds, 17 mammals, 5 invertebrates, 2 amphibians and 4 reptiles) and 20 plant species listed in the Annex II and/or in the Annex IV of Habitat or Bird directives. It is thus considered one of the most important biodiversity hotspots in the Mediterranean region (Blanca 1996, Blanca et al. 1998, Cañadas et al. 2014). Sierra Nevada has several legal protections: Biosphere Reserve MAB Committee UNESCO; Special Area of conservation (Natura 2000 network); Natural Park and National Park. The area includes 61 municipalities with more than 90, 000 inhabitants. The main economic activities are agriculture, tourism, cattle raising, beekeeping, mining, and skiing (Bonet el al. 2010).

界定座標範圍 緯度南界 經度西界 [36.87, -3.69], 緯度北界 經度東界 [37.26, -2.56]

分類群涵蓋範圍

This dataset includes a total of 27847 records of the order Passeriformes. There are 16 families represented in this dataset. Nearly one third of the specimens belong to the family Fringillidae. A total of 44 genera are represented in this collection, with Emberiza, Cyanistes, Turdus, Fringilla and Parus having the highest number of records (Figure 3). There are 70 taxa of this dataset included in the European Red List (BirdLife International 2015): 67 categorized as Least Concern; 2 Not evaluated, and 1 taxa considered as Vulnerable. According to Spanish Red List (Madroño et al. 2004), 3 taxa of this dataset are considered under Near Threatened category, 1 taxa as Vulnerable and 1 as Least Concern categories respectively

Class Aves
Family Aegithalidae, Alaudidae, Certhiidae, Cinclidae, Corvidae, Fringillidae, Laniidae, Motacillidae, Muscicapidae, Paridae, Passeridae, Phylloscopidae, Sittidae, Sturnidae, Sylviidae, Turdidae
Genus Aegithalos, Alauda, Anthus, Carduelis, Certhia, Cinclus, Coccothraustes, Corvus, Cyanistes, Emberiza, Erithacus, Fringilla, Galerida, Garrulus, Hippolais, Lanius, Lophophanes, Loxia, Lullula, Luscinia, Miliaria, Monticola, Motacilla, Muscicapa, Oenanthe, Oriolus, Parus, Passer, Periparus, Petronia, Phoenicurus, Phylloscopus, Pica, Prunella, Pyrrhocorax, Regulus, Saxicola, Serinus, Sitta, Spinus, Sturnus, Sylvia, Troglodytes, Turdus

時間涵蓋範圍

起始日期 / 結束日期 2008-03-01 / 2015-04-01

計畫資料

無相關描述

計畫名稱 Sierra Nevada Global-Change Observatory
辨識碼 OBSNEV
經費來源 Sierra Nevada Global Change Observatory is funded by the Consejería de Medio Ambiente y Ordenación del Territorio (Junta de Andalucía) through the European Union (FEDER project) and by the Spanish Government (via “Fundación Biodiversidad”, which is a Public Foundation). Some activities carried out by the OBSNEV (data analysis, quantification of ecosystem services, harmonization of monitoring methods, integration in major cyberinfrastructures, etc.) are funded by the European Commission thanks to different projects (FP7: EU BON; H2020: eLTER, ECOPOTENTIAL; Life: ADAPTAMED).
研究區域描述 Sierra Nevada (Andalusia, SE Spain), is a mountainous region with an altitudinal range between 860 m and 3482 m a.s.l. covering more than 2000 km2 (Figure 1). The climate is Mediterranean, characterized by cold winters and hot summers, with pronounced summer drought (July-August). The annual average temperature decreases in altitude from 12–16°C below 1500 m to 0°C above 3000 m a.s.l., and the annual average precipitation is about 600 mm. Additionally, the complex orography of the mountains causes strong climatic contrasts between the sunny, dry south-facing slopes and the shaded, wetter north-facing slopes. Annual precipitation ranges from less than 250 mm in the lowest parts of the mountain range to more than 700 mm in the summit areas. Winter precipitation is mainly in the form of snow above 2000 m of altitude. This mountain area comprises 27 habitat types from the Habitat Directive. Sierra Nevada protected area contains 72 animal species (44 breeding birds, 17 mammals, 5 invertebrates, 2 amphibians and 4 reptiles) and 20 plant species listed in the Annex II and/or in the Annex IV of Habitat or Bird directives. It is thus considered one of the most important biodiversity hotspots in the Mediterranean region (Blanca 1996, Blanca et al. 1998, Cañadas et al. 2014). Sierra Nevada has several legal protections: Biosphere Reserve MAB Committee UNESCO; Special Area of conservation (Natura 2000 network); Natural Park and National Park. The area includes 61 municipalities with more than 90, 000 inhabitants. The main economic activities are agriculture, tourism, cattle raising, beekeeping, mining, and skiing (Bonet el al. 2010).
研究設計描述 Sierra Nevada Global Change Observatory (OBSNEV) (Bonet et al. 2011) is a long-term research project that is being undertaken at Sierra Nevada Biosphere Reserve (SE Spain). It is intended to compile the information necessary for identifying as early as possible the impacts of global change, in order to design management mechanisms to minimize these impacts and adapt the system to new scenarios (Aspizua et al. 2010, Bonet el al. 2010). The general objectives are to: • Evaluate the functioning of ecosystems in the Sierra Nevada Nature Reserve, their natural processes and dynamics over a medium-term timescale. • Identify population dynamics, phenological changes, and conservation issues regarding key species that could be considered indicators of ecological processes. • Identify the impact of global change on monitored species, ecosystems, and natural resources, providing an overview of trends of change that could help foster ecosystem resilience. • Design mechanisms to assess the effectiveness and efficiency of management activities performed in the Sierra Nevada in order to implement an adaptive management framework. • Help to disseminate information of general interest concerning the values and importance of Sierra Nevada. The Sierra Nevada Global Change Observatory has four cornerstones: • A monitoring program with 40 methodologies that collect information on ecosystem functioning (Aspizua et al. 2012, 2014). • An information system to store and manage all the information gathered (http://obsnev.es/linaria.html - Pérez-Pérez et al. 2012; Free access upon registration). • A plan to promote adaptive management of natural resources using the data amassed through the monitoring programme. • An outreach programme to disseminate all the available information to potential users (see News Portal of the project at http://obsnev.es and the wiki of the project at http://wiki.obsnev.es, Pérez-Luque et al. 2012) The Sierra Nevada Global Change Observatory is linked to other national (Zamora and Bonet 2011) and international monitoring networks: GLOCHAMORE (Global Change in Mountain Regions) (Björnsen 2005), GLOCHAMOST (Global Change in Mountain Sites) (Schaaf 2009), LTER-Spain (Long-Term Ecological Research), LifeWatch (Basset and Los 2012), etc. This project is also involved in several European projects like MS-MONINA (FP7 project. www.ms-monina.eu), EU BON (Hoffmann et al. 2014), eLTER (H2020 project. www.lter-europe.net/projects/eLTER), ECOPOTENTIAL (H2020 project. www.ecopotential-project.eu/) and ADAPTAMED (Life project).

參與計畫的人員:

Regino Jesus Zamora Rodríguez

取樣方法

Sampling procedure was the line-transect method (Verner, 1985), with a bandwidth of 50 m, 25 m on each side of the line (Barea-Azcón et al 2012, 2014). A total of 16 transect were sampled with lengths ranged from 1.9 to 3 km. Sight and sound records within the sample area were accepted as contacts. All transects were sampled in the early morning, under appropriate climatic conditions. The observer walks at a constant speed of 2 to 4 km/h. Transects are repeated at least once per month provided that the conditions of snow cover permitting. This implies that the sites located on the higher elevations are sampled only from late spring to early autumn.

研究範圍 This dataset covers four representative habitats within Sierra Nevada mountain range: Pyrenean oak forest , thorny thickets on the edge of the forest, common juniper and Spanish juniper scrublands and high-summit ecosystems. These ecosystems were selected based on criteria of singularity and ecological functionality in the context of Sierra Nevada (Barea-Azcón et al. 2012, 2014) and can be described as follow: - Pyrenean oak forest: Mediterranean woodland composed mainly of relict Quercus pyrenaica and some dominant scrubland species (i.e. Berberis hispanica, Prunus ramburii, Rosa canina, Crataegus monogyna and Adenocarpus decorticans). These forests show strong evidences of past management that determine their current structure and diversity. These management is mainly based on charcoal, pastureland creation, and wood production until the 1950s, so that the current trees are mostly resprouts of 60-70 years old. The target localities (n=4) are located at an average elevation of 1650 m a.s.l. (1600-1750 m a.s.l.) and are distributed in the south, west, north and east slopes of Sierra Nevada, reflecting all the ecological conditions of the Pyrenean oak forest in the study area (Pérez-Luque et al. 2013). -Thornscrubs: Typical areas dominated by thorny thickets on the edge of the forest or as result of recent colonization of abandoned arable lands. Berberis hispanica, Prunus ramburii, Rosa canina, Crataegus monogyna are dominant but other species as Lonicera arborea or even Sorbus spp. This open habitat is very important for breeding birds in the study area and also for winter visitors due to a great production of fruits from the end of the summer to the beginning of winter. Transect (n=4) in this habitat are located between 1450 and 2060 m a.s.l. (average: 1790 m a.s.l.). -Common juniper and Spanish juniper scrublands: vegetation in these localities is composed mainly of common juniper (Juniperus communis), Spanish juniper (Juniperus Sabina). Cytisus galianoi and Genista baetica are also important species in these ecosystems. These scrublands rarely exceed 60 cm in height and appear intermingled with rocks and stony ground. Transects (n=4) located in this ecosystems comprise an elevational range from 2000 to 2300 m a.s.l. (average: 2150 m a.s.l.). -High-summit ecosystems: composed by typical Alpine landscape. These ecosystems are characterized by rocky outcrops that originated from glacial activity, pastureland, small snow beds, and glacial lagoons. The four transects that represents this Mediterranean high mountain habitat comprise an elevational gradient from 2280 to 3100 m a.s.l., with an average elevation of 2580 m a.s.l.
品質控管 The sampling transects were georeferenced using a Garmin eTrex Legend GPS (WGS 84 Datum) with an accuracy of ±5 m. We also used colour digital orthophotographs provided by the Andalusian Cartography Institute and GIS (ArcGIS 9.2; ESRI, Redlands, California, USA) to verify that the geographical coordinates of the transect were correct (Chapman and Wieczorek 2006). For the identification of the specimes several fields guides were used (De Juana and Varela 2000, Jonsson 2001). The scientific names were checked with database of the IOC World Bird List (v 5.52) (Gill and Donkster 2015). We also used the R package taxize (Chamberlain and Szocs 2013, Chamberlain et al. 2014) to verify the taxonomical classification. We also performed validation procedures (Chapman 2005a, 2005b) (geopraphic coordinate format, coordinates within country/provincial boundaries, absence of ASCII anomalous characters in the dataset) with DARWIN_TEST (v3.2) software (Ortega-Maqueda and Pando 2008).

方法步驟描述:

  1. All data were stored in a normalized database (PostgreSQL) and incorporated into the Information System of Sierra Nevada Global-Change Observatory. Taxonomic and spatial validations were made on this database (see Quality-control description). A custom-made SQL view of the database was performed to gather occurrence data and other variables associated with occurrence data, specifically: • Birds Count: Number of individual recorded by the observer within transect (see Sampling description) • Distance: Distance of the contact (bird) to transect line. The distance is estimated by eye. The occurrence and measurement data were accommodated to fulfill the Darwin Core Standard (Wieczorek et al. 2009, 2012). We used Darwin Core Archive Validator tool (http://tools.gbif.org/dwca-validator/) to check whether the dataset meets Darwin Core specifications. The Integrated Publishing Toolkit (IPT v2.0.5) (Robertson et al. 2014) of the Spanish node of the Global Biodiversity Information Facility (GBIF) (http://www.gbif.es/ipt) was used both to upload the Darwin Core Archive and to fill out the metadata. The Darwin Core elements for the occurrence data included in the dataset are: occurrenceId, modified, language, basisOfRecord, institutionCode, collectionCode, catalogNumber, scientificName, kingdom, phylum, class, order, family, genus, specificEpithet, scientificNameAuthorship, continent, country, countryCode, stateProvince, county, locality, minimumElevationInMeters, maximumElevationInMeters, decimalLongitude, decimalLatitude, coordinateUncertaintyinMeters, geodeticDatum, recordedBy, day, month, year, EventDate. For the measurement data, the Darwin Core elements included were: occurrenceId, measurementID, measurementType, measurementValue, measurementAccuracy, measurementUnit, measurementDeterminedDate, measurementDeterminedBy, measurementMethod.

引用文獻

  1. Aspizua R, Bonet FJ, Zamora R, Sánchez FJ, Cano-Manuel FJ, Henares I (2010) El observatorio de cambio global de Sierra Nevada: hacia la gestión adaptativa de los espacios naturales. Ecosistemas 19(2): 56–68. http://www.revistaecosistemas.net/index.php/ecosistemas/article/view/46
  2. Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (Eds) (2012) Observatorio de Cambio Global Sierra Nevada: metodologías de seguimiento. Consejería de Medio Ambiente, Junta de Andalucía, 1–112.
  3. Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora RJ (Eds) (2014) Sierra Nevada Global-Change Observatory. Monitoring methodologies. Consejería de Medio Ambiente, Junta de Andalucía, 112 pp.
  4. Barbet-Massin M, Thuiller W, Jiguet F (2012) The fate of European breeding birds under climate, land-use and dispersal scenarios. Global Change Biology 18 (3): 881–890. doi: 10.1111/j.1365-2486.2011.02552.x
  5. Barea-Azcón JM, Martín-Jaramillo J, López R (2012) Paseriformes y otras aves. In: Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (Eds). Observatorio de Cambio Global Sierra Nevada: metodologías de seguimiento. Consejería de Medio Ambiente, Junta de Andalucía. 86-87.
  6. Barea-Azcón JM, Martín-Jaramillo J, López R (2014) Passerines and other birds. In: Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (Eds). Sierra Nevada Global Change Observatory. Monitoring methodologies. Consejería de Medio Ambiente, Junta de Andalucía. 86-87.
  7. Basset A, Los W. (2012) Biodiversity e-Science: LifeWatch, the European infrastructure on biodiversity and ecosystem research. Plant Biosystems 146 (4): 780-782. doi: 10.1080/11263504.2012.740091
  8. Björnsen A (Ed.) (2005) The GLOCHAMORE (Global Change and Mountain Regions) Research Strategy. Berne (Switzerland) and Vienna (Austria). Mountain Research Initiative Office and University of Vienna, 1–48. http://unesdoc.unesco.org/images/0014/001471/147170E.pdf
  9. Blanca G (1996) Protección de la flora de Sierra Nevada (Granada y Almería). Conservación Vegetal 1: 6.
  10. Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (Southern Spain). Biological Conservation 85(3): 269–285. doi: 10.1016/S0006-3207(97)00169-9
  11. Bonet FJ, Pérez-Luque AJ, Moreno R, Zamora R (2010) Sierra Nevada Global Change Observatory. Structure and Basic Data. Environment Department (Andalusian Regional Government)–University of Granada, 1–48. http://refbase.iecolab.es/files/bonet/2010/2905_Bonet_etal2010.pdf
  12. Bonet FJ, Aspizua-Cantón R, Zamora R, Sánchez FJ, Cano-Manuel FJ, Henares I (2011) Sierra Nevada Observatory for monitoring global change: Towards the adaptive management of natural resources. In: Austrian MaB Comitee (Ed.) Biosphere Reserves in the mountains of the world. Excellence in the clouds? Austrian Academy of Sciences Press, Vienna, 48–52.
  13. Cañadas EM, Fenu G, Peñas J, Lorite J, Mattana E, Bacchetta G (2014) Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biological Conservation 170: 282–291. doi: 10.1016/j.biocon.2013.12.007
  14. Chamberlain SA, Szöcs E (2013) taxize: taxonomic search and retrieval in R. F1000Research 2: 191. doi: 10.12688/f1000research.2-191.v2
  15. Chamberlain S, Szocs E, Boettiger C, Ram K, Bartomeus I, Baumgartner J (2014) taxize: Taxonomic information from around the web. R package version 0.3.0. https://github.com/ropensci/taxize
  16. Chapman AD (2005a) Principles and Methods of Data Cleaning – Primary Species and Species-Occurrence Data, version 1.0. Global Biodiversity Information Facility, Copenhagen, 75 pp. http://www.gbif.org/orc/?doc_id=1262
  17. Chapman AD (2005b) Principles of Data Quality, version 1.0. Global Biodiversity Information Facility, Copenhagen, 61 pp. http://www.gbif.org/orc/?doc_id=1229
  18. Crick H (2004) The impact of climate change on birds. Ibis 146: 48-56. doi: 10.1111/j.1474-919X.2004.00327.x
  19. De Juana E, Varela JM (2000) Guía de las Aves de España. Península, Baleares y Canarias. Lynx Edicions, Barcelona.
  20. Garzón J (2012) Revisión histórica de la ornitología en Sierra Nevada. In: Garzón Gutiérrez J, Henares Civantos I (Eds) Las Aves de Sierra Nevada. Consejería de Agricultura, Pesca y Medio Ambiente de la Junta de Andalucía, Granada, 41-49.
  21. Garzón J, Henares I (2012) Las Aves de Sierra Nevada. Consejería de Agricultura, Pesca y Medio Ambiente de la Junta de Andalucía, Granada.
  22. Gill F, Donsker D (2015) IOC World Bird List (v 5.2). http://www.worldbirdnames.org [accessed June 10, 2015] doi: 10.14344/IOC.ML.5.2
  23. Gregory RD, Willis SG, Jiguet F, Voříšek P, Klvaňová A, van Strien A, Huntley B, Collingham YC, Couvet D, Green RE (2009) An indicator of the impact of climatic change on European bird populations. PLoS ONE 4, e4678. doi: 10.1371/journal.pone.0004678
  24. Gutiérrez R, De Juana E, Lorenzo JA (2012) Lista de las aves de España. Versión online 1.0: nombres castellano, científico e inglés. SEO/BirdLife. http://www.seo.org/wp-content/uploads/2012/10/Lista_-Aves_Espana_2012.pdf
  25. Hoffmann A, Penner J, Vohland K, Cramer W, Doubleday R, Henle K, Kõljalg U, Kühn I, Kunin W, Negro JJ, Penev L, Rodríguez C, Saarenmaa H, Schmeller D, Stoev P, Sutherland W, Ó Tuama É, Wetzel F, Häuser CL (2014) The need for an integrated biodiversity policy support process – Building the European contribution to a global Biodiversity Observation Network (EU BON). Nature Conservation 6: 49–65. doi: 10.3897/natureconservation.6.6498
  26. Jonsson L (2001) Guía de aves de Europa, con el Norte de África y el Próximo Oriente. Ediciones Omega.
  27. Madroño A, González C, Atienza JC (2004) Libro Rojo de las Aves de España. Dirección General para la Biodiversidad-SEO/BirdLife. Madrid-España, 452 pp.
  28. Magurran AE, Baillie SR, Buckland ST, Dick JM, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in Ecology and Evolution, 25: 574–582. doi: 10.1016/j.tree.2010.06.016
  29. Müller F, Gnauck A, Wenkel KO, Schubert H, Bredemeier M (2010) Theoretical demands for long-term ecological research and the management of long-term data sets. In: Müller F, Baessler C, Schubert H, Klotz S (Eds) Long-term ecological research. Between theory and application. Springer, New York. 11-25. doi: 10.1007/978-90-481-8782-9_2
  30. Ortega-Maqueda I, Pando F (2008) DARWIN_TEST v3.2: Una aplicación para la validación y el chequeo de los datos en formato Darwin Core 1.2 or Darwin Core 1.4. Unidad de Coordinación de GBIF.ES, CSIC. Ministerio de Educación y Ciencia. Madrid, Spain, http://www.gbif.es/Darwin_test/Darwin_test.php
  31. Pacifi M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akcakaya HT, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nature Climate Change 5: 215-224. doi: 10.1038/nclimate2448
  32. Pearce-Higgins JW, Green RE (2014) Birds and Climate Change. Impacts and conservation responses. Cambridge University Press. United Kingdom.
  33. Pearce-Higgins JW, Eglington SN, Martay B, Chamberlain DE (2015) Drivers of climate change impacts on bird communities. Journal of Animal Ecology, 84(4): 943–954. doi: 10.1111/1365-2656.12364
  34. Pérez-Luque AJ, Bonet FJ, Zamora R (2012) The Wiki of Sierra Nevada Global Change Observatory. Bulletin of the Ecological Society of America 93(3): 239–240. doi: 10.1890/0012-9623-93.3.239
  35. Pérez-Luque AJ, Bonet FJ, Benito B, Zamora R (2013) Caracterización ambiental de los robledales de Quercus pyrenaica Willd. de Sierra Nevada. In: XI Congreso Nacional de la Asociación Española de Ecología Terrestre. Invitación a la ecología. Pamplona, Spain. doi: 10.7818/AEET.XICongress.2013
  36. Pérez-Pérez R, Bonet FJ, Pérez-Luque AJ, Zamora R (2012) Linaria: a set of information management tools to aid environmental decision making in Sierra Nevada (Spain) LTER site. In: Long Term Ecological Research (LTER) (Ed.) Proceedings of the 2013 LTER All Scientist Meeting: The Unique Role of the LTER Network in the Antropocene: Collaborative Science Across Scales. LTER, Estes Park - Colorado, USA.
  37. Pleguezuelos JM (1991) Evolución histórica de la avifauna nidificante en el SE de la Península Ibérica (1850-1985). Consejería de Cultura y Medio Ambiente. Junta de Andalucia. 61 pp.
  38. Robertson T, Döring M, Guralnick R, Bloom D, Wieczorek J, Braak K, Otegui J, Russell L, Desmet P (2014) The GBIF Integrated Publishing Toolkit: Facilitating the Efficient Publishing of Biodiversity Data on the Internet. PLoS ONE 9(8): e102623, doi: 10.1371/journal.pone.0102623
  39. Sanz JJ (2002) Climate change and birds: Have their ecological consequences already been detected in the Mediterranean region? Ardeola 49(1): 109-120.
  40. Schaaf T (2009) Mountain Biosphere Reserves–A People Centred Approach that also Links Global Knowledge. Sustainable Mountain Development 55: 13–15. http://lib.icimod.org/record/26505/files/c_attachment_601_5624.pdf
  41. Verner J (1985) Assessment of counting techniques. In: Current Ornithology 2: 247-302. Springer US. doi: 10.1007/978-1-4613-2385-3_8
  42. Wieczorek J, Döring M, De Giovanni R, Robertson T, Vieglais D (2009) Darwin Core Terms: A quick reference guide. http://rs.tdwg.org/dwc/terms/
  43. Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core: An evolving community-developed biodiversity data standard. PLoS ONE 7(1): e29715. doi: 10.1371/journal.pone.0029715
  44. Zamora R, Camacho I (1984) Evolución estacional de la comunidad de aves en un robledal de Sierra Nevada. Doñana Acta Vertebrata 11: 129–150.
  45. Zamora R (1987a) Dinámica temporal y selección de hábitat de los passeriformes de la alta montaña de Sierra Nevada (Granada). PhD thesis, Granada, Spain: University of Granada.
  46. Zamora R (1987b). Variaciones altitudinales en la composición de las comunidades nidificantes de aves de Sierra Nevada. Doñana Acta Vertebrata 14: 83–106.
  47. Zamora R (1988a) Composición y estructura de la comunidad de Passeriformes de la alta montaña de Sierra Nevada. Ardeola 35: 197–220.
  48. Zamora R (1988b) Estructura morfológica de una comunidad de Passeriformes de alta montaña (Sierra Nevada, SE de España). Ardeola 35: 71–95.
  49. Zamora R (1990) Seasonal variations of a passerine community in a mediterranean high-mountain. Ardeola 37: 219–228.
  50. Zamora R, Bonet FJ (2011) Programa de Seguimiento del Cambio Global en Sierra Nevada: ciencia y tecnología para la gestión adaptativa. Boletín de la RED de seguimiento del cambio global en Parques Nacionales 1: 18–24. http://reddeparquesnacionales.mma.es/parques/rcg/html/rcg_boletin_01.htm
  51. Zamora R, Barea-Azcón JM (2015) Long-Term changes in mountain passerine bird communities in the Sierra Nevada (southern Spain): A 30-year case study. Ardeola 62(1): 3-18. doi: 10.13157/arla.62.1.2015.3

額外的詮釋資料

替代的識別碼 bb1c7420-fbb5-46e2-87ad-658081360694
doi:10.15468/ow9noo
https://ipt.gbif.es/resource?r=passerine