Literature records in MZNA-LIT: primary biodiversity records in environmental assessments in Spain

Occurrence Observation
最新版本 published by University of Navarra – Department of Environmental Biology on 11月 19, 2024 University of Navarra – Department of Environmental Biology

下載最新版本的 Darwin Core Archive (DwC-A) 資源,或資源詮釋資料的 EML 或 RTF 文字檔。

DwC-A資料集 下載 1,263 紀錄 在 English 中 (89 KB) - 更新頻率: 需要時
元數據EML檔 下載 在 English 中 (37 KB)
元數據RTF文字檔 下載 在 English 中 (19 KB)

說明

The data set comprises primary biodiversity records (PBR) on protected species identified during environmental assessments in Spain from 2013 to 2023. The data were extracted from Records of Decisions (RODs) published in the Spanish Official State Gazette, focusing on species listed under the Spanish Catalogue of Threatened Species and the List of Wild Species under Special Protection Regime. These EA-related data belong to dark data, stuck in Records of Decision and thus rarely accessible, limiting their availability for other conservation purposes. Through automated data extraction and manual verification, this data set offers standardized and georeferenced EA-related dark data for future conservation planning and decision-making.

資料紀錄

此資源出現紀錄的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 1,263 筆紀錄。

亦存在 1 筆延伸集的資料表。延伸集中的紀錄補充核心集中紀錄的額外資訊。 每個延伸集資料表中資料筆數顯示如下。

Occurrence (核心)
1263
Reference 
1263

此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。

版本

以下的表格只顯示可公開存取資源的已發布版本。

如何引用

研究者應依照以下指示引用此資源。:

MZNA (2024). Literature records in MZNA-LIT: primary biodiversity records in environmental assessments in Spain. v1.2. University of Navarra, Museum of Zoology. Occurrence dataset. https://doi.org/10.15470/bvznpy

權利

研究者應尊重以下權利聲明。:

此資料的發布者及權利單位為 University of Navarra – Department of Environmental Biology。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF 註冊

此資源已向GBIF註冊,並指定以下之GBIF UUID: 3d6fbb6d-8699-4f93-9adc-c1fd6bc03f4e。  University of Navarra – Department of Environmental Biology 發佈此資源,並經由GBIF Spain同意向GBIF註冊成為資料發佈者。

關鍵字

Occurrence; Observation; Environmental Assessment; Protected species; Public archives; Dark Data

聯絡資訊

Maite Telletxea
  • 元數據提供者
  • 出處
  • 連絡人
  • PhD student
University of Navarra
31008 Pamplona
Navarra
ES
MZNA Museum of Zoology
  • 出處
  • Institution
University of Navarra
31008 Pamplona
Navarra
ES
David Galicia
  • 典藏經理
University of Navarra
31008 Pamplona
Navarra
ES
Rafael Miranda
  • 作者
University of Navarra
31008 Pamplona
Navarra
ES
Arturo H. Ariño
  • 託管人
University of Navarra
31008 Pamplona
Navarra
ES
Ángel Chaves
  • 典藏經理
University of Navarra
31008 Pamplona
Navarra
ES
Ana Amézcua
  • 典藏經理
University of Navarra
31008 Pamplona
Navarra
ES
María Imas
  • 典藏經理
University of Navarra
31008 Pamplona
Navarra
ES

地理涵蓋範圍

The data set primarily comprises occurrence records from Peninsular Spain (99.84%). It also includes two other records from the Balearic and Canary Islands.

界定座標範圍 緯度南界 經度西界 [28.951, -13.61], 緯度北界 經度東界 [43.659, 2.729]

分類群涵蓋範圍

The data set comprises records of 59 species corresponding to five classes, 16 orders, and 23 families. The species correspond to 31 non-Chiroptera threatened species listed in the Spanish Catalogue of Threatened Species (11 endangered and 20 vulnerable) and 28 Chiroptera species (one endangered, 11 vulnerable, and 16 listed in the List of Wild Species under Special Protection Regime).

Species Aegypius monachus (Buitre negro), Aphanius iberus (Fartet), Aquila adalberti (Águila imperial ibérica), Aquila fasciata (Águila perdicera), Ardeola ralloides (Garcilla cangrejera), Aythya nyroca (Porrón pardo), Barbastella barbastellus (Murciélago de bosque), Botaurus stellaris (Avetoro común), Charadrius alexandrinus (Chorlitejo patinegro), Charadrius morinellus (Chorlito carambolo), Chersophilus duponti (Alondra de Dupont o Ricotí), Chioglossa lusitanica (Salamandra rabilarga), Ciconia nigra (Cigüeña negra), Circus pygargus (Aguilucho cenizo), Emys orbicularis (Galápago europeo), Eptesicus isabellinus (Murciélago hortelano mediterráneo), Eptesicus serotinus (Murciélago hortelano), Erythropygia galactotes (Alzacola), Fulica cristata (Focha moruna), Gypaetus barbatus (Quebrantahuesos), Hypsugo savii (Murciélago montañero), Larus audouinii (Gaviota de Audouin), Marmaronetta angustirostris (Cerceta pardilla), Microtus cabrerae (Topillo de Cabrera), Milvus milvus (Milano real), Miniopterus schreibersii (Murciélago de cueva), Myotis alcathoe (Murciélago ratonero bigotudo pequeño), Myotis bechsteinii (Murciélago ratonero forestal), Myotis blythii (Murciélago ratonero mediano), Myotis capaccinii (Murciélago ratonero patudo), Myotis daubentonii (Murciélago ratonero ribereño), Myotis emarginatus (Murciélago ratonero pardo), Myotis myotis (Murciélago ratonero grande), Myotis mystacinus (Murciélago ratonero bigotudo), Myotis nattereri (Murciélago de Natterer), Nyctalus lasiopterus (Nóctulo grande), Nyctalus leisleri (Nóctulo pequeño), Nyctalus noctula (Nóctulo mediano), Oxyura leucocephala (Malvasía cabeciblanca), Pandion haliaetus (Águila pescadora), Phalacrocorax aristotelis (Cormorán moñudo), Phoenicurus phoenicurus (Colirrojo real), Pipistrellus kuhlii (Murciélago de borde claro), Pipistrellus nathusii (Murciélago de Nathusius), Pipistrellus pipistrellus (Murciélago enano), Pipistrellus pygmaeus (Murciélago de Cabrera), Plecotus auritus (Murciélago orejudo dorado), Plecotus austriacus (Murciélago orejudo gris), Pterocles alchata (Ganga común), Pterocles orientalis (Ganga ortega), Rana pyrenaica (Rana pirenaica), Rhinolophus euryale (Murciélago mediterráneo de herradura), Rhinolophus ferrumequinum (Murciélago grande de herradura), Rhinolophus hipposideros (Murciélago pequeño de herradura), Rhinolophus mehelyi (Murciélago mediano de herradura), Testudo graeca (Tortuga mora), Tetrax tetrax (Sisón común)

時間涵蓋範圍

彙整期間 07/2012-01/2023

計畫資料

This thesis aims to enhance the efficiency of biodiversity data management to improve conservation efforts. It examines the dark data generated from environmental management-related activities, which often remain misused due to accessibility challenges. By identifying barriers to data flow, assessing data mobilization impacts on national biodiversity understanding, and developing improved data protocols, the project seeks to make critical biodiversity information more accessible and usable. The ultimate goal is to ensure that high-quality biodiversity data is available for informed decision-making and effective conservation planning, following FAIR data principles (Findable, Accessible, Interoperable, Reusable).

計畫名稱 DATA for BiodivERsity Governance: looking for the efficiency of biodiversity data management for conservation (DATABerG).

參與計畫的人員:

Maite Telletxea Martínez
Rafael Miranda Ferreiro
Arturo H. Ariño Plana
David Galicia Paredes

取樣方法

We searched environmental Records of Decision (RODs) in the Official State Gazette (https://www.boe.es/) to identify pronouncements with biodiversity data. We processed these reports and automatically detected species citations. Those fieldwork-based records, so-called Primary Biodiversity Records, constitute this published data set.

研究範圍 The data set contains species records from 232 Spanish localities or municipalities where environmental assessments have been conducted, in 90% of cases, locations suitable for installing a photovoltaic solar plant or a wind farm. Spain is a country located in southwestern Europe and includes most of the Iberian Peninsula, the Balearic Islands, the Canary Islands, and five small areas in North Africa. Due to its geographical position, its varied topography, and the influence of different climates, Spain is characterized by the presence of four biogeographical regions: Mediterranean bioregion, Atlantic bioregion, Alpine bioregion, and Macaronesian region.
品質控管 The performance of automatic biodiversity data detection was assessed by calculating precision and recall (Kohavi & Provost, 1998; Fahmy Amin, 2022) based on correctly detected, incorrectly detected, and undetected records. Precision, representing the accuracy of the detections, was 0.937, while recall, reflecting the proportion of total records detected, was 0.948. False positives, such as species names within organization titles, affected precision, while recall was compromised by misspelled or incomplete species names. Despite these issues, the detection system performed well overall. Georeferencing uncertainty was evaluated following Marcer et al. 2020.

方法步驟描述:

  1. Environmental Records of Decision (RODs) were collected from the Official State Gazette by searching for “evaluación ambiental” in the “Other provisions” database. Using the Octoparse data scraper (Octoparse, n.d.), we extracted the content of these pronouncements as text strings for further analysis. Species citations were automatically detected using RStudio (R Core Team, 2022), considering scientific names, common names, and possible synonyms included in the CEEA and the LESRPE. These species records were manually reviewed and categorized into three types: Primary Biodiversity Record (PBR, based on fieldwork), absence (species not recorded despite fieldwork), and literature-based. PBRs were georeferenced a posteriori using Google Maps (https://www.google.com/maps), calculating their uncertainty following best practice guidelines (Chapman & Wieczorek, 2020; Marcer et al., 2020). The data were incorporated into the MZNA database (Zootron v4.5; Ariño, 1991) and were standardized following the Darwin Core Standard (Darwin Core Maintenance Group, 2023), resulting in a database with 32 fields.

引用文獻

  1. Kohavi, R. & Provost, F. (1998). Glossary of term. Machine Learning, 30: 271‑274. https://doi.org/10.1023/a:1017181826899. https://doi.org/10.1023/a:1017181826899
  2. Fahmy Amin, M. (2022). Confusion Matrix in Binary Classification Problems: A Step-by-Step Tutorial. Journal of Engineering Research, 6(5). https://doi.org/10.21608/erjeng.2022.274526. https://doi.org/10.21608/erjeng.2022.274526
  3. Marcer, A., Haston, E., Groom, Q., Ariño, A., Chapman, A., Bakken, T., Braun, P., Dillen, M., Ernst, M., Escobar, A., Fichtmüller, D., Livermore, L., Nicolson, N., Paragamian, K., Paul, D., Pettersson, L., Phillips, S., Plummer, J., Rainer, H., Rey, I., Robertson, T., Röpert, D., Santos, J., Uribe, F., Waller, J., Wieczorek, J. (2020). Quality issues in georeferencing: From physical collections to digital data repositories for ecological research. Diversity and distributions, 27(3): 564‑567. https://doi.org/10.1111/ddi.13208. https://doi.org/10.1111/ddi.13208
  4. Octoparse. (n.d.). Web scraping tool & free web crawlers. https://www.octoparse.com/. https://www.octoparse.com/
  5. R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. URL: https://www.R-project.org. https://www.R-project.org
  6. Chapman, A. & Wieczorek, J. (2020). Georeferencing Best Practices. GBIF Secretariat, Copenhagen. https://doi.org/10.15468/doc-gg7h-s853. https://doi.org/10.15468/doc-gg7h-s853
  7. Ariño, A. H. (1991). Bibliography of Iberian Polychaetes: a data base. Ophelia, suppl. 5: 647–652. https://doi.org/10.1163/9789004629745_068. https://doi.org/10.1163/9789004629745_068
  8. Darwin Core Maintenance Group (2023) Darwin Core List of Terms. Biodiversity Information Standards (TDWG). http://rs.tdwg.org/dwc/doc/list/2023-09-18. http://rs.tdwg.org/dwc/doc/list/2023-09-18

額外的詮釋資料

目的 The aim of the present data set is to make the dark data generated during environmental assessments FAIR (Findable, Accessible, Interoperable, and Reusable). Publishing these data in a publicly accessible platform creates an opportunity for their potential reuse in future conservation decisions, ensuring that these decisions are based on the best available evidence.
替代的識別碼 10.15470/bvznpy
3d6fbb6d-8699-4f93-9adc-c1fd6bc03f4e
https://ipt.gbif.es/resource?r=mzna-lit