Mosquito Alert Dataset

オカレンス(観察データと標本)
最新バージョン CREAF - Centre de Recerca Ecològica i Aplicacions Forestals により出版 7月 26, 2024 CREAF - Centre de Recerca Ecològica i Aplicacions Forestals

DwC-A形式のリソース データまたは EML / RTF 形式のリソース メタデータの最新バージョンをダウンロード:

DwC ファイルとしてのデータ ダウンロード 37,828 レコード English で (6 MB) - 更新頻度: annually
EML ファイルとしてのメタデータ ダウンロード English で (110 KB)
RTF ファイルとしてのメタデータ ダウンロード English で (53 KB)

説明

The Mosquito Alert dataset includes occurrence records of adult mosquitoes. The records were collected through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Each record presented in the database is linked to a photograph submitted by a citizen scientist and validated by entomological experts to determine if it provides evidence of the presence of any of five targeted mosquito vectors of top concern in Europe (i.e. Aedes albopictus, Aedes aegypti, Aedes japonicus, Aedes koreicus, Culex pipiens). The temporal coverage of the database is from 2014 through 2022 and the spatial coverage is worldwide. Most of the records from 2014 to 2020 are from Spain, reflecting the fact that the project was funded by Spanish national and regional funding agencies. Since autumn 2020 the data has expanded to include substantial records from other countries in Europe, particularly the Netherlands, Italy, and Hungary, thanks to a human volunteering network of entomologists coordinated by the AIM-COST Action and to technological developments through the VEO project to increase scalability. Among many possible applications, Mosquito Alert dataset facilitates the development of citizen-based early warning systems for mosquito-borne disease risk. This dataset can be further re-used for modelling vector exposure risk or training machine-learning detection and classification routines on the linked images, to help experts in data validation and build up automated alert systems.

データ レコード

この オカレンス(観察データと標本) リソース内のデータは、1 つまたは複数のデータ テーブルとして生物多様性データを共有するための標準化された形式であるダーウィン コア アーカイブ (DwC-A) として公開されています。 コア データ テーブルには、37,828 レコードが含まれています。

拡張データ テーブルは1 件存在しています。拡張レコードは、コアのレコードについての追加情報を提供するものです。 各拡張データ テーブル内のレコード数を以下に示します。

Occurrence (コア)
37828
Multimedia 
37827

この IPT はデータをアーカイブし、データ リポジトリとして機能します。データとリソースのメタデータは、 ダウンロード セクションからダウンロードできます。 バージョン テーブルから公開可能な他のバージョンを閲覧でき、リソースに加えられた変更を知ることができます。

バージョン

次の表は、公にアクセス可能な公開バージョンのリソースのみ表示しています。

引用方法

研究者はこの研究内容を以下のように引用する必要があります。:

Mosquito Alert, Escobar A, Južnič-Zonta Ž (2024). Mosquito Alert Dataset. Version 1.15. CREAF - Centre de Recerca Ecològica i Aplicacions Forestals. Occurrence dataset. https://doi.org/10.15470/t5a1os

権利

研究者は権利に関する下記ステートメントを尊重する必要があります。:

パブリッシャーとライセンス保持者権利者は CREAF - Centre de Recerca Ecològica i Aplicacions Forestals。 To the extent possible under law, the publisher has waived all rights to these data and has dedicated them to the Public Domain (CC0 1.0). Users may copy, modify, distribute and use the work, including for commercial purposes, without restriction.

GBIF登録

このリソースをはGBIF と登録されており GBIF UUID: 1fef1ead-3d02-495e-8ff1-6aeb01123408が割り当てられています。   GBIF Spain によって承認されたデータ パブリッシャーとして GBIF に登録されているCREAF - Centre de Recerca Ecològica i Aplicacions Forestals が、このリソースをパブリッシュしました。

キーワード

Occurrence; Observation; Occurrence

外部データ

リソース データは他の形式で入手可能です。

Mosquito Alert webmap http://webserver.mosquitoalert.com/ ASCII CSV
Mosquito Alert pictures (BioImage Archive) http://www.mosquitoalert.com/mosquito-images-data-base/ NA PNG, JPG
Mosquito Alert reports https://doi.org/10.5281/zenodo.6235191 ASCII JSON

連絡先

Mosquito Alert
  • 最初のデータ採集者
Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Centre d’Estudis Avançats de Blanes (CEAB-CSIC)
ES
Agustí Escobar
  • プログラマー
  • Mosquito Alert Head of IT development
Centre de Recerca Ecològica i Aplicacions Forestals
  • Campus de Bellaterra (UAB) Edifici C, 08193, Cerdanyola del Vallès, Barcelona
ES
Živko Južnič-Zonta
  • メタデータ提供者
  • 論文著者
  • Mosquito Alert Data Engineer
Centre d’Estudis Avançats de Blanes
  • C/ d'accés a la Cala St. Francesc 14, 17300, Blanes, Girona
ES
Aitana Oltra
  • データ提供者
  • Mosquito Alert Scientific Officer and Manager
Universitat Pompeu Fabra
  • C/ Ramon Trias Fargas, 25-27, 08005, Barcelona
ES
Mosquito Alert Community
  • データ提供者
  • Mosquito Alert Citizen Scientists and Community Builders
Citizen scientists and community builders that actively participate in the Mosquito Alert project (www.mosquitoalert.com).
Frederic Bartumeus
  • 研究代表者
  • Mosquito Alert Co-Director
Centre d’Estudis Avançats de Blanes
  • C/ d'accés a la Cala St. Francesc 14, 17300, Blanes, Girona
ES
John R.B. Palmer
  • 研究代表者
  • Mosquito Alert Co-Director
Universitat Pompeu Fabra
  • C/ Ramon Trias Fargas, 25-27, 08005, Barcelona
ES
Agustí Escobar
  • プログラマー
  • Mosquito Alert Head of IT development
Centre de Recerca Ecològica i Aplicacions Forestals
  • Campus de Bellaterra (UAB) Edifici C, 08193, Cerdanyola del Vallès, Barcelona
ES
Roger Eritja
  • データ提供者
  • Mosquito Alert Entomological expert
Centre d’Estudis Avançats de Blanes
  • C/ d'accés a la Cala St. Francesc 14, 17300, Blanes, Girona
ES
Aitana Oltra
  • データ提供者
  • Mosquito Alert Scientific Officer and Manager
Universitat Pompeu Fabra
  • C/ Ramon Trias Fargas, 25-27, 08005, Barcelona
ES
Alex Richter-Boix
  • データ提供者
  • Mosquito Alert Communication Officer
Centre de Recerca Ecològica i Aplicacions Forestals
  • Campus de Bellaterra (UAB) Edifici C, 08193, Cerdanyola del Vallès, Barcelona
ES
Joan Garriga
  • プログラマー
  • Mosquito Alert Data Scientist
Centre d’Estudis Avançats de Blanes
  • C/ d'accés a la Cala St. Francesc 14, 17300, Blanes, Girona
ES
Isis Sanpera-Calbet
  • データ提供者
  • Entomological expert
Universitat Pompeu Fabra
  • C/ Ramon Trias Fargas, 25-27, 08005, Barcelona
ES
Monika Falk
  • データ提供者
  • Mosquito Alert Data Scientist
Centre d’Estudis Avançats de Blanes
  • C/ d'accés a la Cala St. Francesc 14, 17300, Blanes, Girona
ES
Francis Schaffner
  • データ提供者
  • Resources provider
Francis Schaffner Consultancy
  • Lörracherstrasse 50, 4125, Riehen
CH
Alessandra della Torre
  • データ提供者
  • Resources and Funding provider
Sapienza University, Department Public Health and Infectious Diseases
  • Piazzale Aldo Moro 5, 00198, Rome
IT
Miguel Ángel Miranda
  • データ提供者
  • Resources provider
University Balearic Islands, Applied Zoology and Animal Conservation Research Group
  • Ctra. Valldemossa km 7.5, 07122, Palma
ES
Marion Koopmans
  • データ提供者
  • Resources and Funding provider
Erasmus University Medical Center
  • Doctor Molewaterplein 40, 3015, GD Rotterdam
NL
Luisa Barzon
  • データ提供者
  • Resources provider
Università degli Studi di Padova, Department of Molecular Medicine
  • Via Gabelli 63, 35121, Padova
ES
Pedro María Alarcón-Elbal
  • データ提供者
  • Entomological expert
Universidad Cardenal Herrera CEU-CEU Universities, Facultad de Veterinaria, Veterinary Public Health and Food Science and Technology, Department of Animal Production and Health
  • C/ Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia
ES
Sarah Delacour
  • データ提供者
  • Entomological expert
University of Zaragoza, Faculty of Veterinary Medicine of Zaragoza, Animal Health Department
  • C/ Miguel Servet 177, 50013, Zaragoza
ES
Mikel Bengoa Paulis
  • データ提供者
  • Entomological expert
Anticimex Spain
  • C/ Jesús Serra Santamans, 5, Planta 3, 08174, Sant Cugat del Vallès, Barcelona
ES
Andrea Valsecchi
  • データ提供者
  • Entomological expert
Agencia de Salud Pública de Barcelona
  • Plaça Lesseps 8 entresol, 08023, Barcelona
ES
Tomàs Montalvo
  • データ提供者
  • Entomological expert
Agencia de Salud Pública de Barcelona
  • Plaça Lesseps 8 entresol, 08023, Barcelona
ES
Maria Angeles Puig
  • データ提供者
  • Entomological expert
Centre d’Estudis Avançats de Blanes
  • C/ d'accés a la Cala St. Francesc 14, 17300 Blanes, Girona
ES
Simone Mariani
  • データ提供者
  • Entomological expert
Centre d’Estudis Avançats de Blanes
  • C/ d'accés a la Cala St. Francesc 14, 17300 Blanes, Girona
ES
Ignacio Ruiz-Arrondo
  • データ提供者
  • Entomological expert
Center for Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR
  • C/Piqueras 98, 3º planta, 26006, La Rioja
ES
Santi Escartin Peña
  • データ提供者
  • Entomological expert
Associació Mediambiental Xatrac
  • C/ Pius Font i Quer, S/N, 17310, Lloret de Mar, Girona
ES
Rosario Melero-Alcíbar
  • データ提供者
  • Entomological expert
Centro de Educación Superior Hygiea
  • Av. de Pablo VI, 9, 28223, Pozuelo de Alarcón, Madrid
ES
Daniel Bravo-Barriga
  • データ提供者
  • Entomological expert
University of Extremadura, Veterinary Faculty, Department of Animal Health
  • Av/ Universidad S/N 10003 Cáceres, Spain
ES
Laura Blanco-Sierra
  • データ提供者
  • Entomological expert
Agencia de Salud Pública de Barcelona
  • Plaça Lesseps 8 entresol, 08023, Barcelona
ES
Aleksandar Cvetkovikj
  • データ提供者
  • Entomological expert
Ss. Cyril and Methodius University in Skopje, Faculty of Veterinary Medicine-Skopje
  • Lazar Pop-Trajkov 5-7, 1000, Skopje
MK
Alice Michelutti
  • データ提供者
  • Entomological expert
Istituto Zooprofilattico Sperimentale delle Venezie
  • Viale dell'Università 10, 35020, Legnaro (Padua)
IT
Beniamino Caputo
  • データ提供者
  • Entomological expert
Sapienza University, Department Public Health and Infectious Diseases
  • Piazzale Aldo Moro 5, 00198, Rome
IT
Carina Zittra
  • データ提供者
  • Entomological expert
University of Vienna, Department of Functional and Evolutionary Ecology
  • Djerassiplatz 1, 1030, Vienna
AT
Cintia Horváth
  • データ提供者
  • Entomological expert
University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca
  • Calea Mănăștur 3-5, Cluj-Napoca, 400372
RO
Diego Parrondo Montón
  • データ提供者
  • Entomological expert
University of Applied Scieces and Arts of Southern Switzerland, Institute of Microbiology
  • Via Flora Ruchat-Roncati 15, 6850, Mendrisio Switzerland
CH
Eleonora Flacio
  • データ提供者
  • Entomological expert
University of Applied Scieces and Arts of Southern Switzerland, Institute of Microbiology
  • Via Flora Ruchat-Roncati 15, 6850, Mendrisio Switzerland
CH
Enkelejda Velo
  • データ提供者
  • Entomological expert
Institute of Public Health, Department of Epidemiology and Control of Infectious Diseases, Vectors' Control Unit
  • Str: "Aleksander Moisiu", No. 80, Tirana
AL
Fabrizio Montarsi
  • データ提供者
  • Entomological expert
Istituto Zooprofilattico Sperimentale delle Venezie
  • Viale dell'Università 10, 35020, Legnaro (Padua)
IT
Filiz Gunay
  • データ提供者
  • Entomological expert
Hacettepe University, Department of Biology, Ecology Section, Vector Ecology Research Group
  • Hacettepe University, Beytepe Campus, 06800, Ankara
TR
Hugo Costa Osório
  • データ提供者
  • Entomological expert
National Institute of Health, Centre for Vectors and Infectious Diseases Research
  • Avenida Padre Cruz, 1649-016, Lisboa
PT
Isra Deblauwe
  • データ提供者
  • Entomological expert
Institute of Tropical Medicine, Department of Biomedical Sciences, Unit of Entomology
  • Nationalestraat 155, 2000, Antwerp
BE
Karin Bakran-Lebl
  • データ提供者
  • Entomological expert
Austrian Agency for Health and Food Safety, Division for Public Health
  • Währinger Strasse 25a, 1090, Vienna
AT
Katja Kalan
  • データ提供者
  • Entomological expert
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies
  • Glagoljaška ulica 8, 6000, Koper
SI
Angeliki F. Martinou
  • データ提供者
  • Entomological expert
British Forces Cyprus, Joint Services Health Unit
CY
Kornélia Kurucz
  • データ提供者
  • Entomological expert
University of Pécs
  • Ifjúság útja 6, 7624, Pécs
HU
Mihaela Kavran
  • データ提供者
  • Entomological expert
University of Novi Sad, Faculty of Agriculture, Laboratory for Medical and Veterinary Entomology
  • Trg Dositeja Obradovića 8, 21000, Novi Sad
RS
Ognyan Mikov
  • データ提供者
  • Entomological expert
National Centre of Infectious and Parasitic Diseases
  • 26, Yanko Sakazov blvd., 1504, Sofia
BG
Perparim Kadriaj
  • データ提供者
  • Entomological expert
Institute of Public Health, Department of Epidemiology and Control of Infectious Diseases, Vectors' Control Unit
  • Str: "Aleksander Moisiu", No. 80, Tirana
AL
Sandra Gewehr
  • データ提供者
  • Entomological expert
Ecodevelopment S.A.
  • Thesi Mezaria, PO Box 2420, 57010 Filyro
GR
Rafael Gutiérrez-López
  • データ提供者
  • Entomological expert
University Balearic Islands, Applied Zoology and Animal Conservation Research Group
  • Ctra. Valldemossa km 7.5, 07122, Palma
ES
Sergio Magallanes
  • データ提供者
  • Entomological expert
Estación Biológica de Doñana, Departamento de Ecología de los Humedales
  • Avda. Américo Vespucio 26, 41092, Sevilla,
ES
Carlos Barceló
  • データ提供者
  • Entomological expert
University Balearic Islands, Applied Zoology and Animal Conservation Research Group
  • Ctra. Valldemossa km 7.5, 07122, Palma
ES
Martina Ferraguti
  • データ提供者
  • Entomological expert
University of Amsterdam, Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics
  • Science Park 904, 1098XH, Amsterdam
NL
Mikel Alexander González
  • データ提供者
  • Entomological expert
Universidad Iberoamericana
  • Avenida Francia 129, 10203, Santo Domingo
DO
Francisco Collantes
  • データ提供者
  • Entomological expert
Universidad de Murcia, Departamento de Zoología y Antropología Física
  • Campus de Espinardo, 30100 Murcia
ES
Nikolina Sokolovska
  • データ提供者
  • Entomological expert
PHI Center for Public Health-Skopje
  • blv.3rd Macedonian brigade, no.18, Skopje
MK
Antonios Michaelakis
  • データ提供者
  • Entomological expert
Benaki Phytopathological Institute, Laboratory of Insects and Parasites of Medical Importance
  • 8, Stefanou Delta str., 14561 Kifissia, Athens
GR
Gábor Kemenesi
  • データ提供者
  • Entomological expert
University of Pécs
  • Ifjúság útja 6, 7624, Pécs
HU
Elton Rogozi
  • データ提供者
  • Entomological expert
Institute of Public Health, Department of Epidemiology and Control of Infectious Diseases, Vectors' Control Unit
  • Str: "Aleksander Moisiu", No. 80, Tirana
AL
Ana Klobucar
  • データ提供者
  • Entomological expert
Andrija Stampar Teaching Institute of Public Health
  • Mirogojska c. 16, 10 000, Zagreb
HR
Marcela Curman Posavec
  • データ提供者
  • Entomological expert
Andrija Stampar Teaching Institute of Public Health
  • Mirogojska c. 16, 10 000, Zagreb
HR
Alexander G.C. Vaux
  • データ提供者
  • Entomological expert
Medical Entomology, UK Health Security Agency
  • Porton Down, Salisbury, SP4 0JG
GB
Adolfo Ibanez-Justicia
  • データ提供者
  • Entomological expert
Centre for Monitoring of Vectors, National Reference Centre, Netherlands Food and Consumer Product Safety Authority
  • Geertjesweg 15, 6706 EA, Wageningen
NL
Marina Bisia
  • データ提供者
  • Entomological expert
Benaki Phytopathological Institute, Laboratory of Insects and Parasites of Medical Importance
  • 8, Stefanou Delta str., 14561 Kifissia, Athens
GR
Georgios Balatsos
  • データ提供者
  • Entomological expert
Benaki Phytopathological Institute, Laboratory of Insects and Parasites of Medical Importance
  • 8, Stefanou Delta str., 14561 Kifissia, Athens
GR
Hans-Peter Fuehrer
  • データ提供者
  • Entomological expert
University of Veterinary Medicine Vienna, Institute of Parasitology
  • Veterinärplatz 1, 1210, Vienna
AT
Maria Sophia Unterköfler
  • データ提供者
  • Entomological expert
University of Veterinary Medicine Vienna, Institute of Parasitology
  • Veterinärplatz 1, 1210, Vienna
AT
Marco Neira
  • データ提供者
  • Entomological expert
The Cyprus Institute
  • Konstantinou Kavafi Street, 20, 2121, Nicosia, Cyprus
CY
Eleonora Longo
  • データ提供者
  • Entomological expert
Sapienza University, Department Public Health and Infectious Diseases
  • Piazzale Aldo Moro 5, 00198, Rome
IT
Francesco Severini
  • データ提供者
  • Entomological expert
Istituto Superiore di Sanità, Department of Infectious Diseases
  • Viale Regina Elena, 299, 00161, Roma,
IT
Francesca Paoli
  • データ提供者
  • Entomological expert
Museo di Scienze di Trento
  • Corso del Lavoro e della Scienza, 3, 38122, Trento
IT
Yasmina Martínez-Barciela
  • データ提供者
  • Entomological expert
The Cyprus Institute
  • Konstantinou Kavafi Street, 20, 2121, Nicosia, Cyprus
CY
Alejandro Polina
  • データ提供者
  • Entomological expert
The Cyprus Institute
  • Konstantinou Kavafi Street, 20, 2121, Nicosia, Cyprus
CY
Artificial Intelligence MA
  • データ提供者
  • Entomological expert
Centre d’Estudis Avançats de Blanes
  • C/ d'accés a la Cala St. Francesc 14, 17300, Blanes, Girona
ES
Jenny Hesson
  • データ提供者
  • Entomological expert
The Cyprus Institute
  • Konstantinou Kavafi Street, 20, 2121, Nicosia, Cyprus
CY
Martina Schäfer
  • データ提供者
  • Entomological expert
The Cyprus Institute
  • Konstantinou Kavafi Street, 20, 2121, Nicosia, Cyprus
CY
Jan Votýpka
  • データ提供者
  • Entomological expert
The Cyprus Institute
  • Konstantinou Kavafi Street, 20, 2121, Nicosia, Cyprus
CY
Jonathan Liria
  • データ提供者
  • Entomological expert
The Cyprus Institute
  • Konstantinou Kavafi Street, 20, 2121, Nicosia, Cyprus
CY
Debashis Ghosh
  • データ提供者
  • Entomological expert
The Cyprus Institute
  • Konstantinou Kavafi Street, 20, 2121, Nicosia, Cyprus
CY
Charles Hatfield
  • データ提供者
  • Entomological expert
The Cyprus Institute
  • Konstantinou Kavafi Street, 20, 2121, Nicosia, Cyprus
CY
Maria Sakellariou Sofianou
  • データ提供者
  • Entomological expert
Benaki Phytopathological Institute, Laboratory of Insects and Parasites of Medical Importance
  • 8, Stefanou Delta str., 14561 Kifissia, Athens
GR
Harrison Hardy
  • データ提供者
  • Entomological expert
Medical Entomology, UK Health Security Agency
  • Porton Down, Salisbury, SP4 0JG
GB
María Isabel Silva-Torres
  • データ提供者
  • Entomological expert
The Cyprus Institute
  • Konstantinou Kavafi Street, 20, 2121, Nicosia, Cyprus
CY

地理的範囲

Worldwide dataset, but mostly centered in Europe.

座標(緯度経度) 南 西 [-90, -180], 北 東 [90, 180]

生物分類学的範囲

The dataset contains 24788 records of Aedes and Culex genus. For Aedes, four species are reported.

Genus Culex (Linnaeus, 1758)
Species Aedes albopictus (Skuse, 1895) (Asian tiger mosquito), Aedes aegypti (Linnaeus, 1762) (Yellow fever mosquito), Aedes japonicus (Theobald, 1901) (Asian bush mosquito), Aedes koreicus (Edwards, 1917) (Korean bush mosquito)

時間的範囲

開始日 / 終了日 2014-06-18 / 2022-12-31

プロジェクトデータ

BACKGROUND. Vector-borne diseases (VBDs) are infections caused by pathogens transmitted by carrier species (vectors), most of which are arthropods. VBDs are a major global health issue, with 80% of the world’s population at risk of one or more of these diseases [1]. VBDs account for 17% of the global burden of communicable diseases with over 1 billion infections and over 700,000 deaths caused by VBDs annually [1]. Many of these diseases, once limited to tropical and subtropical zones, are now increasingly seen in temperate areas [1, 2]. Among VBDs, mosquito-borne diseases (MBDs) account for a large share of cases. In 2017 the World Health Organisation estimated over 347 million MBD cases and over 447,000 deaths caused by MBDs annually [1]. Of the 3,591 known species of mosquitoes (order Diptera; family Culicidae) [3], only a fraction are involved in disease transmission or cause considerable nuisance to human and animal populations. These include invasive species that are spreading throughout Europe due to globalisation and climate change [2, 4]. There are five mosquito vectors of primary concern in Europe, four Aedes invasive mosquitoes (AIMs) and the native Culex pipiens (northern house mosquito). The four AIMs established in Europe are Ae. (Stegomyia) aegypti (yellow fever mosquito), Ae. (Stegomyia) albopictus (Asian tiger mosquito), Ae. (Hulecoetomyia) japonicus (Asian bush mosquito) and Ae. (Hulecoetomyia) koreicus (korean bush mosquito) [5]. Their ability to spread into new territories, and their capacity to act as vectors of tropical viral diseases such as dengue, chikungunya, Zika, yellow fever and Japanese encephalitis, make AIMs key vectors of public health relevance [6]. Notably, Ae. albopictus has already caused outbreaks of exotic arboviruses in Europe, i.e. outbreaks of dengue in Croatia, France, Spain and Italy [7, 8, 9, 10], and two of chikungunya in Italy [11]. In Europe, Culex pipiens is considered the principal vector of West Nile virus (WNV) [12, 13] and Usutu virus [14]. Since 2010, the WNV epidemiological pattern in Europe has evolved, with an increasing incidence of human and horse cases after what began with a very low level of endemicity. Several WNV outbreaks have occurred during the last decades and there was a significant peak in incidence in 2018, with 1,503 cases in the European Union [13, 15, 16]. Given the absence of effective vaccine solutions for most MBDs [17], vector surveillance is critical and needs to be strengthened and coordinated on a global scale. Currently, no global surveillance system is in place to track the emergence and spread of MBDs [18, 19]. Increased mosquito surveillance is needed for timely detection of changes in abundances and species diversity, providing valuable knowledge to health authorities and enabling swift mosquito control responses and other public health interventions. Obtaining field information with traditional mosquito surveillance tools is notoriously costly and time-consuming, and a major drawback of these tools is that they lack scalability. Costs can be significantly reduced by combining citizen science approaches with traditional ones for targeted surveillance [20, 21], and using big data spatial modelling techniques to compute risk maps of vector presence and abundance, human-vector interactions, and disease transmission zones at local or regional scales [22, 23]. Citizen science and the use of digital and networked technologies (Internet, mobile phones) have provided a new dimension to scientific research in the fields of vector ecology, eco-epidemiology, and public health [24, 25]. In the context of MBDs, a considerable amount of ongoing citizen science surveillance projects (29 projects operating in 16 countries all over the world, including some with wide geographic coverage) [26] have successfully involved public participation and provided data on mosquito populations. For future improvement, there is a need to continue engaging with stakeholders, researchers, public health agents, industry, and policymakers. CONTEXT. Mosquito Alert is a citizen science system aimed at investigating and managing disease-carrying mosquitoes. It has been operational since 2014, with most participants initially located in Spain and participation expanding worldwide, particularly in Europe since 2020 [20, 27]. It uses mobile phones and the Internet to bring together citizens, scientists, and public health authorities to fight against MBDs. Mosquito Alert combines authoritative data with citizen science methodologies for data quality assessment and modelling, enabling large-scale estimates of mosquito population dynamics and the human-mosquito interactions through which MBDs are transmitted across a range of scales. The data set presented here was collected through the Mosquito Alert mobile phone application. Citizen scientists provide geo-localized reports and images of targeted mosquito species, breeding sites and biting behaviour. Mosquito Alert also includes a module for sending samples to reference research labs in Europe that can be launched when and where considered necessary, allowing these labs to perform vector specialised identification and screening analyses. In addition, the app collects anonymous information on the geographic distribution of participants in order to correct for sampling effort biases [20]. The application also includes a participant scoring and a notification system that provides scientific and educational contents to participants. These features are expected to increase engagement and encourage frequent and extensive participation [28]. The five target species that citizen scientists can report are Ae. albopictus, Ae. aegypti, Ae. japonicus, Ae. koreicus, and Cx. pipiens. The targeted Aedes species are relatively easy to identify in photographs, whereas Culex pipiens can be difficult to distinguish from other Culex species. App tutorials and communication with citizen scientists are used to facilitate the identification and reporting of the targeted species. Adult mosquito reports containing photos are validated independently by three expert entomologists from the Digital Entomological Network in a web-based private platform, the digital Entolab. In addition to these species of interest, expert entomologists also identify other species of mosquitoes (not targeted) and even other insect groups. These identifications are also valuable from an educational perspective, as they help citizen scientists understand differences between targeted and non-targeted mosquitoes/insects. Since manual inspection of digital images is not a scalable option, the Mosquito Alert database of expert-validated images has been used to train a deep learning model to find Ae. albopictus [29] and the other target species (work in progress). This artificial intelligence system will not only be a helpful pre-selector for the expert validation process but also an automated classifier giving quick feedback to the app participants, which is expected to contribute to long-term motivation. In this dataset we must differentiate two periods: the period 2014-2020 (August) and the period 2020 (September)-2021. During the period 2014-2020 the project was mainly focused in Spain, funded from various national sources (see section Funding), and therefore, most of the reports are from there. During this period the system was looking for two invasive species: Ae. albopictus and Ae. aegypti. This mosquito surveillance tool has so far yielded valuable results. It has served to monitor the spread of Ae. albopictus in Spain [30, 31] and to investigate mosquito species dispersal mechanisms [32]. It was also the source of the first-ever confirmed observation of Ae. japonicus in Spain and it has served as the basis for estimating the Ae. japonicus distribution in northern Spain [33, 34]. Mosquito Alert also provided the first record of Ae. (Fredwardsius) vittatus in northwestern Spain and it has contributed to mosquito biodiversity knowledge more broadly [35]. In addition to all this, Mosquito Alert provides direct links between researchers, public health authorities and the general public, serving as a valuable means for promoting public awareness and education about MBDs. From September 2020 to 2021 the project increased the number of targeted mosquito species to the five listed above, and expanded across Europe with the support of European funding (AIM-COST OC-2017-1-22105, CA17108; VEO SC1-BHC-13-2019,874735). These projects have facilitated the required changes to increase the number of targeted species, scale the system at European level, and promote the development of a Digital Entomological Network of experts, boosting the dissemination of activities across Europe to promote data collection and direct interaction with citizen scientists in different countries. In 2020 and 2021, the digital citizen science surveillance through Mosquito Alert was carried out in combination with pan-European harmonised field entomological sampling (AIMSurv campaigns) under the framework of AIM-COST Action.

タイトル Mosquito Alert
識別子 mosquitoalert
ファンデイング This work was supported by: 2021-2022 Fair Computational Epidemiology (FACE); Plataforma Temática Interdisciplinar PTI+ Salud Global, Consejo Superior de Investigaciones Científicas (CSIC); Grant No.: N/A | 2020-2025 Human-Mosquito Interaction Project: Host-vector networks, mobility and the socio-ecological context of mosquito-borne disease; European Research Council (ERC); Grant No.: 853271 | 2020-2021 Strengthening Barcelona’s Defenses Against Disease-Vector Mosquitoes: Automatically Calibrated Citizen-Based Surveil- lance, Barcelona Ciència; Ajuntament de Barcelona, Institut de Cultura; Grant No.: BCNPC/00041 | 2020-2024 VEO: Versatile Emerging infectious disease Observatory, H2020 SC1-BHC-13-2019; European Commission (EC); Grant No.: 874735 | 2020-2025 Preparing for vector-borne virus outbreaks in a changing world: a One Health Approach; Dutch National Research Agenda (NWA); Grant No.: NWA/00686468 | 2019-2021 Big Mosquito Bytes: Community-Driven Big Data Intelligence to Fight Mosquito-Borne Disease; Fundació ”La Caixa”, Health Research 2018 “la Caixa” Banking Foundation; Grant No.: HR19-00336 | 2018-2022 Aedes Invasive Mosquitoes (AIM), COST ACTION OC-2017-1-22105; European Cooperation in Science and Technology (COST); Grant No.: CA17108 | 2018 Mosquito Alert: programa para investigar y controlar mosquitos vectores de enfermedades como el Dengue, el Chikungunya y el Zika; Fundació ”La Caixa”; Grant No.: N/A | 2017-2019 Plataforma Integral per al Control de l’Arbovirosis a Catalunya (PICAT); Departament de Salut, Programa PERIS 2016-2020, Generalitat de Catalunya; Grant No.: 00466 | 2016-2018 Ciència ciutadana per a la millora de la gestió i els models predictius de dispersió i distribució real de mosquit tigre a la Província de Girona; Diputació de Salut de Girona (DIPSALUT); Grant No.: N/A | 2016 Nuevas herramientas de participación en ciencia ciudadana: laboratorios de validación y cocreación para AtrapaelTigre.com; Fundación Española para la Ciencia y la Tecnología (FECYT); Grant No.: FCT-15-9515 | 2016-2017 Mosquito Alert: programa para investigar y controlar mosquitos vectores de enfermedades como el Dengue, el Chikungunya y el Zika; Fundació ”La Caixa”; Grant No.: N/A | 2016-2017 Ciència ciutadana per a la millora de la gestió i els models predictius de dispersió i distribució real de mosquit tigre a la Província de Girona; Diputació de Salut de Girona (DIPSALUT); Grant No.: N/A | 2015-2016 Citizens-based early warning systems for invasive species and disease vectors: The case of the Asian Tiger mosquito; Fundació ”La Caixa” and Centre de Recerca Ecològica i Aplicacions Forestals (CREAF); Grant No.: N/A | 2014-2016 Invasión del mosquito tigre en España: Salud pública y cambio global; Ministerio de Economía y Competitividad, Plan Estatal I+D+I; Grant No.: CGL2013-43139-R | 2014 Diseño e implementación de un sistema ciudadano de alerta y seguimiento del mosquito tigre: ciencia en sociedad (Atrapa el Tigre 2.0); Fundación Española para la Ciencia y la Tecnología (FECYT); Grant No.: FCT-13-701955
Study Area Description The project was initially focused on Spain, although in recent years it’s coverage expanded to Europe and is slowly taking momentum worldwide. At the moment, the Mosquito Alert application is available in 20 languages.
研究の意図、目的、背景など(デザイン) See extense documentation at http://www.mosquitoalert.com/en/publicaciones/

プロジェクトに携わる要員:

Aitana Oltra
  • POINT_OF_CONTACT

収集方法

There is no pre-set sampling frequency: participants can send as much data as they like wherever and whenever they like or can. Data sampling may be more intense in some periods due to dissemination events (e.g. project appearances in TV, Science Fairs, etc.) but is also naturally modulated by mosquito seasonal prevalence and activity patterns.

Study Extent There are no limitations in terms of geographic areas from which citizen are allowed to participate, so data can be sent from all over the world. Nevertheless, Mosquito Alert’s main coverage has been in Spain, with increasing coverage in Europe since 2020, mainly in The Netherlands, Italy, and Hungary. The temporal coverage of the dataset is from June 18, 2014 to September 20, 2021.
Quality Control The Digital Entomology Network is formed by a number of experts, including the so-called National Supervisors. At each European country participating through the projects AIM-COST and VEO, the National Supervisors serve as national level coordinators and supervisors. In addition, a senior entomologist Super Expert is in charge of the coordination of the whole validation flow and mechanics in the Mosquito Alert system. A manual for the expert validation system is distributed beforehand to the members of the network and published in the Mosquito Alert website [36] with specifications on the criteria for species determination. The taxonomic determination of an observation results in two potential outputs indicating the degree of certainty: confirmed, when taxonomic features can be clearly seen in the picture/s and probable, when only some characteristic features can be observed. The final taxonomic determination and the relative degree of certainty is computed based on expert’s validations in two steps. (1) Selection of most voted category. The selection for the most voted category is a simple majority selection. For example, assume the following three expert validation assessment: "Probably Ae. albopictus | Definitely Ae. albopictus | Probably Ae. aegypti". The most voted category is Ae. albopictus with two votes. Note that in this step, the "Probably" and "Definitely" qualifications given by each expert are ignored. If there is no majority (i.e, every expert chooses a different taxonomic category) the classification result is considered a "conflict" and the report is flagged and revised by the super-expert. (2) Certainty value selection. The certainty labels of the most voted taxonomic category are mapped to integer values such that 1 corresponds to "Probably" and 2 to "Definitely". The final certainty assessment value is given by averaging the values and rounding them to the nearest integer value with a round half down strategy. For the above example, the most voted category is Ae. albopictus where two values are issued ("Probably" and "Definitely") that results in an average value of 1.5. Finally, after rounding the average to 1 the assessment gives a "Probable" Ae. albopictus occurrence. If the final result would be 2, the certainty degree of the occurrence would be labeled as "Confirmed". Note that rounding half down strategy implies a conservative approach in the certainty evaluation: if one of the expert expresses doubt, the overall value is decreased. The validation procedure allows an expert to label a report with not sure in case of pictures with insufficient information. Those records are not included in the current dataset, since only confirmed or probable mosquito records are valid occurrences. For each record, the corresponding entomologist experts who reviewed it are cited by name or by a group label (e.g. institution, team name, etc.). The Anonymous expert label is assigned to experts who wish to remain anonymous.

Method step description:

  1. An anonymous citizen scientist observes an adult-mosquito (dead or alive).
  2. Within the Mosquito Alert smart-phone application, the citizen scientist answers a small questionnaire with taxonomic and environment-related questions, indicates the location of the observation, attaches one or more photographs (optional), and adds comments (optional).
  3. The report is reviewed by members of the Mosquito Alert team to remove anything that appears to be personally identifying information or inappropriate content.
  4. Each photograph attached to the report is evaluated independently by three entomologists, and each assigns a label to the report indicating their degree of certainty as to whether the photographs show the target species. A "not sure" label is used if an expert is not able to classify a report. A report is flagged if for any reason the report needs further discussion or should be temporarily left out from the public view. The final taxonomic classification comes from averaging the three expert validations (see section Data Validation and Quality Control).
  5. The report is released into the public domain after the three entomologists’ validation and reviewed by a senior entomologist who also checks flagged reports. As citizen scientists can try several pictures of the same specimen in one single report, one of the three experts has the responsibility to choose the final image released to the public domain (public map), which is the one published in the GBIF dataset. The selection criteria is to choose the mosquito image that best represents the observation, or the most valid for species determination.

書誌情報の引用

  1. World Health Organization. Global Vector Control Response 2017–2030. World Health Organization; 2017.
  2. Tozan Y, Branch OLH, Rocklöv J. Vector-Borne Diseases in a Changing Climate and World. In: Climate Change and Global Public Health Springer; 2021.p. 253–271.
  3. Harbach R, Valid Species | Mosquito Taxonomic Inventory; 2021. https://mosquito-taxonomic-inventory.myspecies.info/ valid-species-list. https://mosquito-taxonomic-inventory.myspecies.info/valid-species-list
  4. Lounibos LP. Invasions by Insect Vectors of Human Disease. Annual Review of Entomology 2002;47(1):233–266. https://doi.org/10. 1146/annurev.ento.47.091201.145206. https://doi.org/10.1146/annurev.ento.47.091201.145206
  5. European Centre for Disease Prevention and Control, Mosquito maps; 2021. https://www.ecdc.europa.eu/en/disease-vectors/ surveillance-and-disease-data/mosquito-maps. https://www.ecdc.europa.eu/en/disease-vectors/ surveillance-and-disease-data/mosquito-maps
  6. Schaffner F, Medlock JM, Bortel WV. Public health significance of invasive mosquitoes in Europe. Clinical Microbiology and In- fection 2013 Aug;19(8):685–692. https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)61413-0/fulltext, publisher: Elsevier. https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)61413-0/fulltext
  7. Succo T, Leparc-Goffart I, Ferré JB, Roiz D, Broche B, Maquart M, et al. Autochthonous dengue outbreak in Nîmes, South of France, July to September 2015. Euro Surveill 2016 May;21(21). https://doi.org/10.2807/1560-7917.ES.2016.21.21.30240. https://doi.org/10.2807/1560-7917.ES.2016.21.21.30240
  8. Gjenero-Margan I, Aleraj B, Krajcar D, Lesnikar V, Klobučar A, Pem-Novosel I, et al. Autochthonous dengue fever in Croatia, August- September 2010. Euro Surveill 2011 Mar;16(9). https://www.eurosurveillance.org/content/10.2807/ese.16.09.19805-en. https://www.eurosurveillance.org/content/10.2807/ese.16.09.19805-en
  9. Monge S, García-Ortúzar V, López Hernández B, Lopaz Pérez MÁ, Delacour-Estrella S, Sánchez-Seco MP, et al. Characterization of the first autochthonous dengue outbreak in Spain (August-September 2018). Acta Trop 2020 Feb;205:105402. https://doi.org/10.1016/j.actatropica.2020.105402. https://doi.org/10.1016/j.actatropica.2020.105402
  10. Lazzarini L, Barzon L, Foglia F, Manfrin V, Pacenti M, Pavan G, et al. First autochthonous dengue outbreak in Italy, August 2020. Euro Surveill 2020 Sep;25(36). http://doi.org/10.2807/1560-7917.ES.2020.25.36.2001606. http://doi.org/10.2807/1560-7917.ES.2020.25.36.2001606
  11. Caputo B, Russo G, Manica M, Vairo F, Poletti P, Guzzetta G, et al. A comparative analysis of the 2007 and 2017 Italian chikungunya outbreaks and implication for public health response. PLoS Negl Trop Dis 2020 Jun;14(6):e0008159. https://doi.org/10.1371/journal.pntd.0008159. https://doi.org/10.1371/journal.pntd.0008159
  12. Engler O, Savini G, Papa A, Figuerola J, Groschup MH, Kampen H, et al. European Surveillance for West Nile Virus in Mosquito Populations. International Journal of Environmental Research and Public Health 2013 Oct;10(10):4869–4895. https://www.mdpi.com/ 1660-4601/10/10/4869, publisher: Multidisciplinary Digital Publishing Institute. https://www.mdpi.com/1660-4601/10/10/4869
  13. Zannoli S, Sambri V. West Nile Virus and Usutu Virus Co-Circulation in Europe: Epidemiology and Implications. Microorganisms 2019 Jul;7(7):184. https://www.mdpi.com/2076-2607/7/7/184, publisher: Multidisciplinary Digital Publishing Institute. https://www.mdpi.com/2076-2607/7/7/184
  14. Fros JJ, Miesen P, Vogels CB, Gaibani P, Sambri V, Martina BE, et al. Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health 2015;1:31–36. https://www.sciencedirect.com/science/article/ pii/S2352771415000063. https://www.sciencedirect.com/science/article/pii/S2352771415000063
  15. European Centre for Disease Prevention and Control, Historical data by year - West Nile virus seasonal surveillance;. https://www.ecdc. europa.eu/en/west-nile-fever/surveillance-and-disease-data/historical. https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/historical
  16. European Centre for Disease Prevention and Control, Weekly updates: 2021 West Nile virus transmission season;. https://www.ecdc. europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc. https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc
  17. Manning JE, Morens DM, Kamhawi S, Valenzuela JG, Memoli M. Mosquito Saliva: The Hope for a Universal Arbovirus Vaccine? The Journal of Infectious Diseases 2018;218(1):7–15. https://doi.org/10.1093/infdis/jiy179. https://doi.org/10.1093/infdis/jiy179
  18. Kampen H, Medlock JM, Vaux AG, Koenraadt CJ, van Vliet AJ, Bartumeus F, et al. Approaches to passive mosquito surveillance in the EU. Parasites and Vectors 2015 Jan;8(1):9. https://doi.org/10.1186/s13071-014-0604-5. https://doi.org/10.1186/s13071-014-0604-5
  19. Schaffner F, Bellini R, Petrić D, Scholte EJ, Zeller H, Marrama Rakotoarivony L. Development of guidelines for the surveillance of invasive mosquitoes in Europe. Parasites and Vectors 2013 Jul;6(1):209. https://doi.org/10.1186/1756-3305-6-209, number: 1. https://doi.org/10.1186/1756-3305-6-209
  20. Palmer JRB, Oltra A, Collantes F, Delgado JA, Lucientes J, Delacour S, et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nature Communications 2017 Oct;8(1):916. https://www.nature.com/articles/s41467-017-00914-9, number: 1 Publisher: Nature Publishing Group. https://www.nature.com/articles/s41467-017-00914-9
  21. Sousa LB, Fricker SR, Doherty SS, Webb CE, Baldock KL, Williams CR. Citizen science and smartphone e-entomology enables low-cost upscaling of mosquito surveillance. Science of The Total Environment 2020;704:135349. https://www.sciencedirect.com/science/ article/pii/S0048969719353410. https://www.sciencedirect.com/science/article/pii/S0048969719353410
  22. Hay SI, George DB, Moyes CL, Brownstein JS. Big Data Opportunities for Global Infectious Disease Surveillance. PLOS Medicine 2013;10(4):e1001413. https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001413, publisher: Public Library of Science. https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001413
  23. Khoury MJ, Ioannidis JPA. Big data meets public health. Science (New York, NY) 2014 Nov;346(6213):1054–1055. https://www.ncbi. nlm.nih.gov/pmc/articles/PMC4684636/. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684636/
  24. Adler FR, Green AM, Şekercioğlu cH. Citizen science in ecology: a place for humans in nature. Annals of the New York Academy of Sciences 2020;1469(1):52–64. https://onlinelibrary.wiley.com/doi/abs/10.1111/nyas.14340. https://onlinelibrary.wiley.com/doi/abs/10.1111/nyas.14340
  25. Wiggins A, Wilbanks J. The Rise of Citizen Science in Health and Biomedical Research. The American Journal of Bioethics 2019;19(8):3– 14. https://doi.org/10.1080/15265161.2019.1619859, publisher: Taylor and Francis. https://doi.org/10.1080/15265161.2019.1619859
  26. Sousa LB, Craig A, Chitkara U, Fricker S, Webb C, Williams C, et al. Methodological Diversity in Citizen Science Mosquito Surveillance: A Scoping Review. Citizen Science: Theory and Practice 2022 Feb;7(1):8. http://theoryandpractice.citizenscienceassociation.org/ article/10.5334/cstp.469/, publisher: Ubiquity Press. http://theoryandpractice.citizenscienceassociation.org/article/10.5334/cstp.469/
  27. Bartumeus F, Oltra A, Palmer JRB. Citizen Science: A Gateway for Innovation in Disease-Carrying Mosquito Management? Trends in Parasitology 2018 Sep;34(9):727–729. https://www.sciencedirect.com/science/article/pii/S1471492218300928. https://www.sciencedirect.com/science/article/pii/S1471492218300928
  28. Howard L, Rees CBv, Dahlquist Z, Luikart G, Hand BK. A review of invasive species reporting apps for citizen science and opportunities for innovation. NeoBiota 2022 Feb;71:165–188. https://neobiota.pensoft.net/article/79597/, publisher: Pensoft Publishers. https://neobiota.pensoft.net/article/79597/
  29. Pataki BA, Garriga J, Eritja R, Palmer JRB, Bartumeus F, Csabai I. Deep learning identification for citizen science surveillance of tiger mosquitoes. Scientific Reports 2021 Feb;11(1):4718. https://www.nature.com/articles/s41598-021-83657-4, publisher: Nature Publishing Group. https://www.nature.com/articles/s41598-021-83657-4
  30. Collantes F, Delacour S, Delgado JA, Bengoa M, Torrell-Sorio A, Guinea H, et al. Updating the known distribution of Aedes al- bopictus (Skuse, 1894) in Spain 2015. Acta Tropica 2016 Dec;164:64–68. https://www.sciencedirect.com/science/article/pii/ S0001706X16306027. https://www.sciencedirect.com/science/article/pii/S0001706X16306027
  31. Delacour-Estrella S, Collantes F, Ruiz Arrondo I, Alarcón-Elbal PM, Delgado JA, Eritja R, et al. First record of Asian tiger mosquito, Aedes albopictus (Diptera, Culicidae), in Anadalusia and first corroboration of the data from Tigatrapp application. Anales de Biología 2014 Oct;(36):93–96. http://www.um.es/analesdebiologia/numeros/36/PDF/36_2014_16.pdf. http://www.um.es/analesdebiologia/numeros/36/PDF/36_2014_16.pdf
  32. Eritja R, Palmer JRB, Roiz D, Sanpera-Calbet I, Bartumeus F. Direct Evidence of Adult Aedes albopictus Dispersal by Car. Scientific Reports 2017 Oct;7(1):14399. https://www.nature.com/articles/s41598-017-12652-5, publisher: Nature Publishing Group. https://www.nature.com/articles/s41598-017-12652-5
  33. Eritja R, Ruiz-Arrondo I, Delacour-Estrella S, Schaffner F, Álvarez Chachero J, Bengoa M, et al. First detection of Aedes japonicus in Spain: an unexpected finding triggered by citizen science. Parasites and Vectors 2019 Jan;12(1):53. https://doi.org/10.1186/s13071-019-3317-y. https://doi.org/10.1186/s13071-019-3317-y
  34. Eritja R, Delacour-Estrella S, Ruiz-Arrondo I, González MA, Barceló C, García-Pérez AL, et al. At the tip of an iceberg: citizen science and active surveillance collaborating to broaden the known distribution of Aedes japonicus in Spain. Parasites and Vectors 2021;14(1):375. https://doi.org/10.1186/s13071-021-04874-4. https://doi.org/10.1186/s13071-021-04874-4
  35. Eritja R, Rubido-Bará M, Delacour-Estrella S, Bengoa M, Ruiz-Arrondo I, Alert CM. Ciencia ciudadana y biodiversidad: primera cita de Aedes (Fredwardsius) vittatus (Bigot, 1861) (Diptera: Culicidae) en Galicia, mediante el proyecto Mosquito Alert. Anales de Biología 2018 Mar;(40):41–45. https://revistas.um.es/analesbio/article/view/414141, publisher: Servicio de Publicaciones de la Universidad de Murcia. https://revistas.um.es/analesbio/article/view/414141
  36. Mosquito Alert, Digital EntoLab;. http://www.mosquitoalert.com/en/entolab/. http://www.mosquitoalert.com/en/entolab/
  37. Escobar A, Oltra A, Živko Južnič-Zonta, Mosquito Alert Dataset. Version 1.9. CREAF - Centre de Recerca Ecològica i Aplicacions Forestals; 2022. https://doi.org/10.15470/t5a1os. https://doi.org/10.15470/t5a1os
  38. Palmer J, Bartumeus F, Eritja R, Garriga J, Mosquito Alert Image Dataset. CREAF - Centre de Recerca Ecològica i Aplicacions Forestals; 2021. https://www.ebi.ac.uk/biostudies/studies/S-BIAD249. https://www.ebi.ac.uk/biostudies/studies/S-BIAD249

追加のメタデータ

目的

This data set can reach many entomological (vector) surveillance and management objectives. First, due to its scalability and massive networking capability it can be used as an Early Warning System (EWS) for detection of invasive species across scales, from city to continental scales. At local scales this type of data can help optimise vector control, as citizen inform about nuisance and presence of mosquitoes at almost real time. Mosquito reduction campaigns, may combine top-down strategies of mosquito (larvae) control (undertaken by public health agencies) with bottom-up strategies promoting social action and behavioural change to reduce domestic and peri-domestic breeding sites’ proliferation. Second, if combined with other data sources this data can be used to make risk assessments, like characterisation of critical areas and seasonal variability for disease risk transmission. It can also be used for data augmentation and calibration in mosquito distribution models of seasonal and inter-annual patterns as well as and spatial suitability maps. Third, the associated images contribute to train machine-learning models for image flow optimisation procedures in digital-based EWS and mosquito detection and classification.

代替識別子 10.15470/t5a1os
1fef1ead-3d02-495e-8ff1-6aeb01123408
https://ipt.gbif.es/resource?r=mosquitoalert
https://ipt.gbif.es/resource?r=mosquitoalert