Dataset of Phenology of flora of mediterranean high-mountains meadows (Sierra Nevada)

Registros biológicos
Última versión publicado por Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia el abr. 28, 2020 Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia

Descargue la última versión de los datos como un Archivo Darwin Core (DwC-A) o los metadatos como EML o RTF:

Datos como un archivo DwC-A descargar 11.002 registros en Español (417 KB) - Frecuencia de actualización: diario
Metadatos como un archivo EML descargar en Inglés (65 KB)
Metadatos como un archivo RTF descargar en Inglés (43 KB)

Descripción

Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems in two periods: 1988-1990 and 2009-2013. A total of 11002 records of occurrences belonging to 19 orders, 28 families 52 genera were collected. 73 taxa were recorded with 29 threatened taxa. We also included data of cover-abundance and phenology attributes for the records. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

Registros

Los datos en este recurso de registros biológicos han sido publicados como Archivo Darwin Core(DwC-A), el cual es un formato estándar para compartir datos de biodiversidad como un conjunto de una o más tablas de datos. La tabla de datos del core contiene 11.002 registros.

también existen 1 tablas de datos de extensiones. Un registro en una extensión provee información adicional sobre un registro en el core. El número de registros en cada tabla de datos de la extensión se ilustra a continuación.

Occurrence (core)
11002
ExtendedMeasurementOrFact 
12002

Este IPT archiva los datos y, por lo tanto, sirve como repositorio de datos. Los datos y los metadatos del recurso están disponibles para su descarga en la sección descargas. La tabla versiones enumera otras versiones del recurso que se han puesto a disposición del público y permite seguir los cambios realizados en el recurso a lo largo del tiempo.

Versiones

La siguiente tabla muestra sólo las versiones publicadas del recurso que son de acceso público.

¿Cómo referenciar?

Los usuarios deben citar este trabajo de la siguiente manera:

iEcolab, University of Granada-Andalusian Environmental Center (Andalusian Institute for Earth System Research) (2014) Phenology of flora of mediterranean high-mountains meadows (Sierra Nevada). 11005 data records. Contributed by University of Granada, OBSNEV, Agencia de Medio Ambiente y Agua de Andalucía, Sánchez-Rojas CP, Zamora R, Veredas A, Fuentes J, Bautista J, Onieva MR, Robles F, Arrufat M, Martínez M and the rangers of Sierra Nevada National-Natural Park B. Villagomez and D. Morillas. Online at http://www.gbif.es:8080/ipt/resource.do?r=borreguiles and http://obsnev.es/noticia.html?id=7839, version 1.0 (last updated on 2014-10-10). Resource ID: GBIF Key:

Derechos

Los usuarios deben respetar los siguientes derechos de uso:

El publicador y propietario de los derechos de este trabajo es Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia. Esta obra está bajo una licencia Creative Commons de Atribución/Reconocimiento-NoComercial (CC-BY-NC 4.0).

Registro GBIF

Este recurso ha sido registrado en GBIF con el siguiente UUID: ff7d3d4a-6c31-4876-8339-a1794f7d0316.  Sierra Nevada Global Change Observatory. Andalusian Environmental Center, University of Granada, Regional Government of Andalusia publica este recurso y está registrado en GBIF como un publicador de datos avalado por GBIF Spain.

Palabras clave

Wet high-mountians meadows; abundance; phenology; Sierra Nevada (Spain); long-term research; global change monitoring; occurrence; observation.; Occurrence

Datos externos

Los datos del recurso también están disponibles en otros formatos

Contactos

Regino Jesús Zamora Rodríguez
  • Originador
Researcher
Grupo de Ecología Terrestre, Departamento de Ecología, Universidad de Granada
Facultad de Ciencias, Campus de Fuentenueva s/n
18071 Granada
Granada
ES
(+34) 958 241000 ext 20037
Antonio Jesús Pérez-Luque
  • Proveedor De Los Metadatos
  • Autor
  • Punto De Contacto
Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avda. Mediterráneo s/n
18006 Granada
Granada
ES
Regino Jesús Zamora Rodíguez
  • Autor
Researcher
Grupo de Ecología Terrestre, Departamento de Ecología, Universidad de Granada
Facultad de Ciencias, Campus de Fuentenueva s/n
18071 Granada
Granada
ES
(+34) 958 241000 ext 20037
Cristina Patricia Sánchez-Rojas
  • Proveedor De Contenido
  • Autor
Technician
Agencia de Medio Ambiente y Agua de Andalucía. Consejería de Medio Ambiente y Ordenación del Territorio. Junta de Andalucía
C/ Joaquina Egüaras, 10
18003 Granada
Granada
ES
Francisco Javier Bonet García
  • Autor
Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avda. Mediterráneo s/n
18006 Granada
Granada
ES
Ramón Pérez-Pérez
  • Autor
Researcher
Laboratorio de Ecología (iEcolab), Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (CEAMA), Universidad de Granada
Avda. Mediterráneo s/n
18006 Granada
Granada
ES

Cobertura geográfica

Sierra Nevada (Andalusia, SE Spain), is a mountainous region with an altitudinal range between 860 m and 3482 m a.s.l. which covers more than 2000 km2. The climate is Mediterranean, characterized by cold winters and hot summers, with pronounced summer drought (July-August). The annual average temperature decreases in altitude from 12-16ºC below 1500 m to 0ºC above 3000 m a.s.l., and the annual average precipitation is about 600 mm. Additionally, the complex orography of the mountains causes strong climatic contrasts between the sunny, dry south-facing slopes and the shaded, wetter north-facing slopes. Annual precipitation ranges from less than 250 mm in the lowest parts of the mountain range to more than 700 mm in the summit areas. Winter precipitation is mainly in the form of snow above 2000 m of altitude. The Sierra Nevada mountain range hosts a high number of endemic plant species (c. 80; Lorite et al. 2007) for a total of 2,100 species of vascular plants (25% and 20% of Spanish and European flora, respectively), being considered one of the most important biodiversity hotspots in the Mediterranean region (Blanca et al. 1998; Cañadas et al. 2014). Sierra Nevada is an isolated high mountain range (reaching 3.482 m.a.s.l.) located in Southern Spain (37ºN, 3ºW) covering 2.100 km2. It hosts a high number of vegetal endemic species (c. 80) (Lorite et al. 2007) in a total of 2.100 species of vascular plants (25 % and 20 % of Spain and Europe flora respectively), being considered one of the most important biodiversity hotspot in the Mediterranean region (Blanca et al. 1998). It has several legal protections: Biosphere Reserve MAB Committee UNESCO; Special Protection Area and Site of Community Importance (Natura 2000 network); and National Park. This mountain area comprises 27 habitats types from the habitat directive. It contains 31 fauna species (20 birds, 5 mammals, 4 invertebrates, 2 amphibians and reptiles) and 20 plants species listed in the Annex I and II of habitats and birds directives. There are 61 municipalities with more than 90.000 inhabitants. The main economic activities are agriculture, tourism, beekeeping, mining and skiing (Bonet et al. 2010).

Coordenadas límite Latitud Mínima Longitud Mínima [36,87, -3,69], Latitud Máxima Longitud Máxima [37,36, -2,559]

Cobertura taxonómica

This dataset includes records of the phylum Magnoliophyta (10939 records, 99.43%) and marginally Pteridophyta (63 records, below 1% of total records). Most of the records included in this dataset belong to both the class Magnoliopsida (6057 records; 55.04%) and Liliopsida (4883 records; 44.37%). The class Psilotopsida is represented by 63 records. There are 19 orders represented in the dataset, Poales (44.25%) and Lamiales (12.52%) being the most important order from classes Liliopsida and Magnoliopsida, respectively. The class Psilotopsida is represented only by order Ophioglossales. In this collection, 28 families are represented, with Cyperaceae, Poaceae and Fabaceae being the families with highest number of records. The dataset contains 72 taxa belonging to 51 genera. Carex, Nardus, and Scorzoneroides are the most represented genera in the database. There are 29 threatened taxa.

Reino Plantae
Filo Magnoliophyta, Pteridophyta
Class Liliopsida, Magnoliopsida, Psilotopsida
Orden Apiales, Asterales, Asparagales, Boraginales, Brassicales, Caryophyllales, Celastrales, Ericales, Fabales, Gentianales, Lamiales, Liliales, Malpighiales, Myrtales, Ophioglossales, Poales, Ranunculales, Rosales, Saxifragales
Familia Apiaceae, Asparagaceae, Asteraceae, Boraginaceae, Brassicaceae, Campanulaceae, Caryophyllaceae, Celastraceae, Crassulaceae, Cyperaceae, Ericaceae, Fabaceae, Gentianaceae, Juncaceae, Lentibulariaceae, Liliaceae, Linaceae, Onagraceae, Ophioglossaceae, Plantaginaceae, Poaceae, Portulacaceae, Polygonaceae, Ranunculaceae, Rosaceae, Rubiaceae, Scrophulariaceae, Violaceae
Género Agrostis, Anthericum, Arenaria, Botrychium, Bromus, Campanula, Carex, Cerastium, Cirsium, Dactylis, Draba, Eleocharis, Epilobium, Erophila, Eryngium, Euphrasia, Festuca, Gagea, Galium, Gentiana, Gentianella, Herniaria, Juncus, Linaria, Lotus, Luzula, Meum, Montia, Myosotis, Nardus, Parnassia, Paronychia, Phleum, Pinguicula, Plantago, Poa, Potentilla, Radiola, Ranunculus, Rumex, Sagina, Scorzoneroides, Sedum, Silene, Spergularia, Stellaria, Thlaspi, Trifolium, Vaccinium, Veronica, Viola

Cobertura temporal

Fecha Inicial / Fecha Final 1988-05-01 / 2013-10-31

Datos del proyecto

No hay descripción disponible

Título Sierra Nevada Global Change Observatory (OBSNEV)
Fuentes de Financiación Sierra Nevada Global Change Observatory is funded by Andalusian Regional Government (via Environmental Protection Agency) and by the Spanish Government (via “Fundación Biodiversidad”, which is a Public Foundation)
Descripción del área de estudio Sierra Nevada (Andalusia, SE Spain), is a mountainous region with an altitudinal range between 860 m and 3482 m a.s.l. which covers more than 2000 km2. The climate is Mediterranean, characterized by cold winters and hot summers, with pronounced summer drought (July-August). The annual average temperature decreases in altitude from 12-16ºC below 1500 m to 0ºC above 3000 m a.s.l., and the annual average precipitation is about 600 mm. Additionally, the complex orography of the mountains causes strong climatic contrasts between the sunny, dry south-facing slopes and the shaded, wetter north-facing slopes. Annual precipitation ranges from less than 250 mm in the lowest parts of the mountain range to more than 700 mm in the summit areas. Winter precipitation is mainly in the form of snow above 2000 m of altitude. The Sierra Nevada mountain range hosts a high number of endemic plant species (c. 80; Lorite et al. 2007) for a total of 2,100 species of vascular plants (25% and 20% of Spanish and European flora, respectively), being considered one of the most important biodiversity hotspots in the Mediterranean region (Blanca et al. 1998; Cañadas et al. 2014).
Descripción del diseño Sierra Nevada Global Change Observatory (OBSNEV) (Bonet et al. 2011) is a long-term research project which is being undertaken at Sierra Nevada Biosphere Reserve (SE Spain). It is intended to compile the information necessary for identifying as early as possible the impacts of global change, in order to design management mechanisms to minimize these impacts and adapt the system to new scenarios (Aspizua et al. 2010, Bonet el al. 2010). The general objectives are to: • Evaluate the functioning of ecosystems in the Sierra Nevada Nature Reserve, their natural processes and dynamics over a medium-term timescale. • Identify population dynamics, phenological changes, and conservation issues regarding key species that could be considered indicators of ecological processes. • Identify the impact of global change on monitored species, ecosystems, and natural resources, providing an overview of trends of change that could help foster ecosystem resilience. • Design mechanisms to assess the effectiveness and efficiency of management activities performed in the Sierra Nevada in order to implement an adaptive management framework. • Help to disseminate information of general interest concerning the values and importance of Sierra Nevada. The Sierra Nevada Global Change Observatory has four cornerstones: 1. A monitoring program with 40 methodologies that collect information on ecosystem functioning (Aspizua et al. 2012; 2014) 2. An information system to store and manage all the information gathered (http://obsnev.es/linaria.html - Pérez-Pérez et al. 2012; Free access upon registration) 3. A plan to promote adaptive management of natural resources using the knowledge amassed through the monitoring programme 4. An outreach program to disseminate all the available information to potential users (see News Portal of the project at http://obsnev.es and the wiki of the project at http://wiki.obsnev.es, Pérez-Luque et al. 2012) The Sierra Nevada Global Change Observatory is linked to other national (Zamora and Bonet 2011) and international monitoring networks: GLOCHAMORE (Global Change in Mountain Regions) (Björnsen 2005), GLOCHAMOST (Global Change in Mountain Sites) (Schaaf 2009), LTER-Spain (Long-Term Ecological Research). In addition to monitoring the ecosystems of this mountain range (i.e., collection of recent data from biotic and abiotic variables) the Sierra Nevada Global Change Observatory is incorporating historical information of biodiversity into its information system and some historical experiments and studies are being revisited to detect potential changes due to global change. The dataset described here is a good example of this idea: a singular ecosystem was revisited and resampled 30 years after to check if the phenology of its flora community has suffered changes

Personas asociadas al proyecto:

Regino Jesús Zamora Rodríguez
  • Investigador Principal

Métodos de muestreo

We sampled at three localities along an altitudinal gradient: one at Prado de la Mojonera (Low Altitude; around 2200 m a.s.l.) and two at Hoya del Moro (Middle and High altitude; 2430-2550 m a.s.l. and around 2775 m a.s.l respectively). For each locality, the sampling was performed every 15 days during the free-snow period once a year from 1988-1990 and from 2009 to 2013. For the middle altitude locality we have data from two periods: 1988-1990 and 2009-2013. For low and high altitude locations we have data from 2009-2013 period. In each locality permanent plots of 1 x 1 m were randomly distributed. In each plot a floristic inventory was carried out. The presence/absence and an estimation of abundance-coverage using the Braun-Blanquet cover-abundance scale (Braun-Blanquet 1964) were recorded for each taxa. We also counted the number of individuals belong to three main phenological phase (phenophase) established: vegetative phenophase, reproductive phenophase (flowering) and seed phenophase. Plots were divided into quadrats of 25 x 25 cm to facilitate counting.

Área de Estudio The Mediterranean high-mountain meadows (know locally as “borreguiles”) are ecosystems conditioned by the snow dynamics and potentially sensitive to changes in water availability and temperature (Fernández Casas, 1974; Martínez Parras et al. 1985). This ecosystem occupies an altitudinal range between 2200 and 3000 m a.s.l. and its distribution is determined by accumulation of the meltwater (Fernández-Casas 1974). Although it represents only 1.4% of this mountain range (1125 ha), it has a high rate of plant endemicity (Table 1) (Bonet et al. 2010; APMM 2013). The borreguiles is included in the Annex I of the Habitats Directive (EU habitat code 6230) (Bartolomé et al. 2005; Rigueiro et al. 2009). This ecosystem settles over hydromorphic soils that develop around mountain lakes, streams, depressions and glacier origin valleys. The overall appearance of borreguiles in summer is intense green, contrasting with the yellowish color of the surrounding psychroxerophiles grasslands. This ecosystem contains several plant communities arranged as parallel bands in relation to water courses (Lorite 2002). The floristic composition of these communities depends on moisture content of the substrate. First, on some moist soil, as a transition from dry grasslands to borreguiles themselves, there is a medium coverage grassland called dry borreguil. It hosts species such Agrostis nevadensis, Plantago nivalis, Ranunculus acetosellifolius, Thymus serpylloides or Arenaria tetraquetra subsp. amabilis (among others) (Losa et al. 1985, Lorite 2002). Then dense grassland appears, located in areas with constant moisture throughout the summer and deep soils. As typical species of this community include Nardus stricta, Festuca iberica, Leontodon microcephalus, Lotus corniculatus subsp. glacialis, Luzula spicata, Ranunculus demissus and Campanula herminii. Moreover, in the rocky promontories areas forming the borreguil are enriched with the presence of Vaccinium uliginosum subsp. nanum and Ranunculus acetosellifolius. In places where there is constant flooding and still waters until fall, the optimum conditions of oxygen deprivation exist for incipient peat formations are installed. These communities are characterized by the presence of species such as Carex nigra, Eleocharis quinqueflora, C. echinata, C. nevadensis, Juncus articulatus, Ranunculus angustifolius, Pinguicula nevadensis or Festuca frigida. In addition to its high ecological value, this ecosystem plays an important role in transhumance livestock systems (Robles et al. 2009). They are pastures with a high nutritive value and with the greater forage production of the Sierra Nevada ecosystems (Boza et al. 2008; González-Rebollar 2006; Robles et al 2009, APMM 2013). This is important because they act as a trophic reserve for livestock in summer (Fernández-Casas 1974; Robles 2008). However the abandonment of uses linked this practice has tended effect of reducing the area of this ecosystems and consequent overloading of neighboring (González-Rebollar 2006; Robles 2008) We selected one of the most representative borreguiles of Sierra Nevada, located at San Juan basin river (Guejar-Sierra; Granada, Spain).The catchment area is about 1325 Ha. This basin was formed by glacial erosion of the bedrock (mica schists) and presents a valley with U-shaped (Martín Martín et al. 2010).
Control de Calidad The sampling plots were georeferenced using a Garmin eTrex Legend GPS (ED1950 Datum) with an accuracy of ±5 m. We also used colour digital ortophotographs provided by the Andalusian Cartography Institute and GIS (ArcGIS 9.2; ESRI, Redlands, California, USA) to verify that the geographical coordinates of each sampling plots were correct (Chapman and Wieczorek 2006). The specimens were taxonomically identified using Flora Iberica (Castroviejo et al. 1986-2005) and others reference floras: Flora de Andalucía Oriental (Blanca et al. 2011), Flora Vascular de Andalucía Oriental (Valdés et al. 1987) and Flora Europaea (Tutin et al. 1964–1980). The scientific names were checked with databases of International Plant Names Index (IPNI 2013) and Catalogue of Life/Species 2000 (Roskov et al. 2013). We also used the R packages taxize (Chamberlian and Szocs 2013; Chamberlain et al. 2014) and Taxostand (Cayuela and Oksanen 2014) to verify the taxonomical classification. We also performed validation procedures (geopraphic coordinate format, coordinates within country/provincial boundaries, absence of ASCII anomalous characters in the dataset) with DARWIN_TEST (v3.2) software (Ortega-Maqueda and Pando, 2008).

Descripción de la metodología paso a paso:

  1. All data were stored in a normalized database and incorporated into the Information System of Sierra Nevada Global Change Observatory. Taxonomic and spatial validations were made on this database (see Quality control description). A custom-made SQL view of the database was performed to gather occurrence data and others variables associated to some occurence data, specifically: • Flowering abundance: number of flowering individuals by square meter • Fruit abundance: number of individuals in fruiting period by square meter • Cover: the percentage of cover by taxon. The value represents a transformation of Braun-Blanquet cover-abundance scale (van der Maarel 1979, 2007) The occurrence and measurement data were accommodated to fulfill the Darwin Core Standard (Wieczorek et al. 2009; 2012). We used Darwin Core Archive Validator tool (http://tools.gbif.org/dwca-validator/) to check whether the dataset meets Darwin Core specifications. The Integrated Publishing Toolkit (IPT v2.0.5) (Robertson et al. 2014) of the Spanish node of the Global Biodiversity Information Facility (GBIF) (http://www.gbif.es:8080/ipt) was used both to upload the Darwin Core Archive and to fill out the metadata. The Darwin Core elements for the occurrence data included in the dataset are: occurrenceId, modified, language, basisOfRecord, institutionCode, collectionCode, datasetName, catalogNumber, scientificName, kingdom, phylum, class, order, family, genus, specificEpithet, infraspecificEpithet, scientificNameAuthorship, continent, country, countryCode, stateProvince, county, locality, minimumElevationInMeters, maximumElevationInMeters, decimalLongitude, decimalLatitude, coordinateUncertaintyinMeters, geodeticDatum, recordedBy, DayCollected, MonthCollected, YearCollected, EventDate. For the measurement data, the Darwin Core elements included are: id, measurementID, measurementType, measurementValue, measurementAccuracy, measurementUnit, measurementDeterminedDate, measurementDeterminedBy, measurementMethod, measurementRemarks.

Datos de la colección

Nombre de la Colección Phenology of flora of mediterranean high-mountains meadows (Sierra Nevada)
Identificador de la Colección http://www.gbif.es:8080/ipt/resource.do?r=borreguiles
Identificador de la Colección Parental Not defined
Métodos de preservación de los ejemplares Ningún tratamiento
Unidades curatoriales Conteo 11.004 +/- 0 observations

Referencias bibliográficas

  1. APMM (Asociación Pastores por el Monte Mediterráneo) (2013). Ganadería Extensiva y PAC en Andalucía. Un análisis con propuestas para el futuro. Asociación Pastores por el Monte Mediterráneo and European Forum on Nature Conservation and Pastoral. Available at www.pastoresmonte.org/dl94
  2. Aspizua R, Bonet FJ, Zamora R, Sánchez FJ, Cano-Manuel FJ, Henares I (2010) El observatorio de cambio global de Sierra Nevada: hacia la gestión adaptativa de los espacios naturales. Ecosistemas 19 (2): 56–68. http://www.revistaecosistemas.net/index.php/ecosistemas/article/view/46
  3. Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (Eds) (2012) Observatorio de Cambio Global Sierra Nevada: metodologías de seguimiento. Consejería de Medio Ambiente, Junta de Andalucía, 1–112.
  4. Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora RJ (2014) Sierra Nevada Global-Change Observatory. Monitoring methodologies. Consejería de Medio Ambiente, Junta de Andalucía, 112 pp. Available at http://refbase.iecolab.es/files/aspizua/2014/2714_Aspizua_etal2014.pdf
  5. Bartolomé C, Álvarez-Jiménez J, Vaquero J, Costa M, Casermeiro MA, Giraldo J, Zamora J (2005) Los tipos de hábitats de interés comunitario de España. Ministerio de Medio Ambiente. Madrid
  6. Björnsen A (Ed) (2005) The GLOCHAMORE (Global Change and Mountain Regions) Research Strategy. Berne (Switzerland) and Vienna (Austria). Mountain Research Initiative Office and University of Vienna, 1– 48. http://unesdoc.unesco.org/images/0014/001471/147170E.pdf
  7. Blanca G (1996) Protección de la flora de Sierra Nevada (Granada y Almería). Conservación Vegetal 1: 6
  8. Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (Southern Spain). Biological Conservation 85 (3): 269-285. doi: 10.1016/S0006-3207(97)00169-9
  9. Blanca G, López Onieva MR, Lorite J, Martínez Lirola MJ, Molero Mesa J, Quintas S, Ruíz-Girela M, Varo MA, Vidal S (2001) Flora amenazada y endémica de Sierra Nevada. Editorial Universidad de Granada. Granada. 410 pp.
  10. Blanca G, Cabezudo B, Cueto M, Fernández-López C, Morales-Torres C (Eds) (2011) Flora Vascular de Andalucía Oriental. Consejería de medio Ambiente, Junta de Andalucía, Sevilla.
  11. Bonet FJ, Pérez-Luque AJ, Moreno R, Zamora R (2010) Sierra Nevada Global Change Observatory. Structure and Basic Data. Environment Department (Andalusian Regional Government)–University of Granada, 1–48. http://refbase.iecolab.es/files/bonet/2010/2905_Bonet_etal2010.pdf
  12. Bonet FJ, Aspizua-Cantón R, Zamora R, Sánchez FJ, Cano-Manuel FJ, Henares I (2011) Sierra Nevada Observatory for monitoring global change: Towards the adaptive management of natural resources. In: Austrian MaB Comitee (Ed) Biosphere Reserves in the mountains of the world. Excellence in the clouds?. Austrian Academy of Sciences Press, Vienna: 48-52.
  13. Boza J, Robles AB, González-Rebollar JL (2007) El papel de la ganadería en las zonas áridas de Andalucía. In Rodero Franganillo A, Rodero Serrano E (Eds) La ganadería Andaluza en el siglo XXI. Patrimonio Ganadero Andaluz. Volumen I. Consejería de Agricultura y Pesca. Junta de Andalucía, 241–266.
  14. Braun-Blanquet J (1964) Pflanzensoziologie. Springer Verlag, Wien, New York, 1 – 865.
  15. Cabezudo B, Talavera S, Blanca G, Salazar C, Cueto M, Valdés B, Hernández-Bermejo JE, Herrera CM, Rodríguez-Hiraldo C, Navas D (2005) Lista roja de la flora vascular de Andalucía. Junta de Andalucía, Consejería de Medio Ambiente; Sevilla, Spain.
  16. Cañadas EM, Fenu G, Peñas J, Lorite J, Mattana E, Bacchetta G (2014) Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biological Conservation 170: 282–291 doi: 10.1016/j.biocon.2013.12.007
  17. Castroviejo S (Ed) (1986–2005) Flora Iberica. Real Jardín Botánico CSIC, Madrid.
  18. Castroviejo S (Ed) (2001) Claves de Flora Ibérica. Plantas Vasculares de la Península Ibérica e Islas Baleares. Volumen 1. Consejo Superior de Investigaciones Científicas. Real Jardín Botánico, Madrid.
  19. Cayuela L, Oksanen J (2014) Taxonstand: Taxonomic standardisation of plant species names. R package version 1.3. http://CRAN.R-project.org/package=Taxonstand
  20. Chamberlain SA, Szöcs E (2013) taxize: taxonomic search and retrieval in R. F1000Research 2: 191. doi: 10.12688/f1000research.2-191.v2
  21. Chamberlain S, Szocs E, Boettiger C, Ram K, Bartomeus I, Baumgartner J (2014) taxize: Taxonomic information from around the web. R package version 0.3.0. https://github.com/ropensci/taxize
  22. Chapman AD (2005a) Principles and Methods of Data Cleaning – Primary Species and Species-Occurrence Data, version 1.0. Global Biodiversity Information Facility, Copenhagen, 75 pp. http://www.gbif.org/orc/?doc_id=1262
  23. Chapman AD (2005b) Principles of Data Quality, version 1.0. Global Biodiversity Information Facility, Copenhagen, 61 pp. http://www.gbif.org/orc/?doc_id=1229
  24. Chapman AD, Wieczorek J (2006) Guide to Best Practices for Georeferencing. Copenhagen: Global Biodiversity Information Facility. Available online at http://www.gbif.org/orc/?doc_id=1288
  25. EC (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L 206: 7–50. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:HTML
  26. Esteban A (1996) Evolución del paisaje nevadense durante los últimos 1.500 años a partir del análisis polínico de borreguiles. 1ª Conferencia Internacional Sierra Nevada. Universidad de Granada. Granada, vol. IV. pp. 251-273.
  27. Fernández-Casas J (1974). Vegetación y flora de Sierra Nevada. Los borreguiles. Boletín de la Estación Central de Ecología, 3: 29–42.
  28. González-Rebollar JL (2006) Caracterización, análisis y dinámica de los sistemas silvopastorales del Parque Nacional de Sierra Nevada. Organismo Autónomo Parques Nacionales. Ministerio de Medioambiente. 2003-2006.
  29. IPNI (2013) The International Plant Names Index. http://www.ipni.org [accessed 05.08.2014]
  30. IUCN (2001) IUCN Red List Categories. Prepared by the IUCN Species Survival Commission. As approved by the 51st Meeting of the IUCN Council Gland, Switzerland. UICN, Gland, Switzerland.
  31. Lorite J (2001). Vegetación de Sierra Nevada. Pp.: 23-45. In: Blanca G, López Onieva MR, Lorite J, Martínez Lirola MJ, Molero Mesa J, Quintas S, Ruíz-Girela M, Varo MA, Vidal S (Eds) Flora amenazada y endémica de Sierra Nevada. Editorial Universidad de Granada. Granada. 410 pp.
  32. Lorite J, Valle F, Salazar C (2003) Síntesis de la vegetación edafohigrófila del Parque Natural y Nacional de Sierra Nevada. Monografías Flora y Vegetación Béticas 13: 47–110
  33. Lorite J, Navarro FB, Valle F (2007) Estimation of threatened orophytic flora and priority of its conservation in the Baetic range (S. Spain). Plant Biosystems 141 (1): 1-14. doi: 10.1080/11263500601153560
  34. Losa Quintana JM, Molero-Mesa J, Casares Porcel M, Pérez-Raya F (1986) El paisaje vegetal de Sierra Nevada: la cuenca alta del Río Genil. Servicio de Publicaciones de la Universidad de Granada, Granada. 285 pp.
  35. Martín-Martín JM, Braga JC, Gómez-Pugnaire MT (2010) Itinerarios geológicos por Sierra Nevada. Consejería de Medio Ambiente. Junta de Andalucía.
  36. Martínez-Parras, J.M.; Peinado, M. & Alcaraz, F. (1987). Datos sobre la vegetación de Sierra Nevada. Lazaroa, 7: 515–533.
  37. Moreno JC (coord.) (2010) Lista Roja 2008 de la flora vascular española. Actualización con los datos del Adenda 2010 al Atlas y Libro Rojo de la Flora Vascular Amenazada. Dirección General de Medio Natural y Política Forestal (Ministerio de Medio Ambiente, y Medio Rural y Marino, y Sociedad Española de Biología de la Conservación de Plantas). Madrid. 46 pp.
  38. Ortega-Maqueda I, Pando F (2008) DARWIN_TEST v3.2: Una aplicación para la validación y el chequeo de los datos en formato Darwin Core 1.2 or Darwin Core 1.4. Unidad de Coordinación de GBIF.ES, CSIC. Ministerio de Educación y Ciencia. Madrid, Spain, http://www.gbif.es/Darwin_test/Darwin_test.php
  39. Pérez-Luque AJ, Bonet FJ, Zamora R (2012) The Wiki of Sierra Nevada Global Change Observatory. Bulletin of the Ecological Society of America 93(3): 239–240. doi: 10.1890/0012-9623-93.3.239
  40. Pérez-Pérez R, Bonet FJ, Pérez-Luque AJ, Zamora R (2012) Linaria: a set of information management tools to aid environmental decision making in Sierra Nevada (Spain) LTER site. In: Long Term Ecological Research (LTER) (Ed) Proceedings of the 2013 LTER All Scientist Meeting: The Unique Role of the LTER Network in the Antropocene: Collaborative Science Across Scales. LTER, Estes Park - Colorado (EE.UU)
  41. Rigueiro A, Rodríguez MA, Gómez-Orellana L (2009) 6230 Formaciones herbosas con Nardus, con numerosas especies, sobre sustratos silíceos de zonas montañosas (y de zonas submontañosas de Europa continental). In: VVAA (Ed) Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Ministerio de Medio Ambiente, y Medio Rural y Marino, Madrid, 66 pp.
  42. Robles, AB (2008) En el conjunto de las Sierras Béticas: pastos, producción, diversidad y cambio global. In: Fernández-Rebollo P, Gómez-Cabrera A, Guerrero JE, Garrido-Varo A, Calzado C, García-Romero AM, Carbonero MD, Blázquez A, Escuín S, Castilo-Carrión S (Eds) Pastos, clave en la gestión de los territorios: integrando disciplinas. Sociedad Española para el Estudio de los Pastos. Consejería de Agricultura y Pesca. Junta de Andalucia. 31–51.
  43. Robles AB, Ruiz-Mirazo J, Ramos ME, González-Rebollar JL (2009) Role of livestock grazing in sustainable use, naturalness promotion in naturalization of marginal ecosystems of southeastern Spain (Andalusia). In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (Eds) Agroforestry in Europe: current status and future prospects. Springer, 211–231.
  44. Roskov Y, Kunze T, Paglinawan L, Abucay L, Orrell T, Nicolson D, Culham A, Bailly N, Kirk P, Bourgoin T, Baillargeon G, Hernandez F, De Wever A, Didžiulis V (Eds) (2013) Species 2000 & ITIS Catalogue of Life. Species 2000: Reading, UK. http://www.catalogueoflife.org/col [accessed 08.05.2014]
  45. Sánchez-Rojas CP (2012) Pastos húmedos de alta montaña: borreguiles. In: Aspizua R, Barea-Azcón JM, Bonet FJ, Pérez-Luque AJ, Zamora R (Eds) Observatorio de Cambio Global Sierra Nevada: metodologías de seguimiento. Consejería de Medio Ambiente, Junta de Andalucía, 72–73.
  46. Schaaf T (2009) Mountain Biosphere Reserves–A People Centred Approach that also Links Global Knowledge. Sustainable Mountain Development 55: 13–15. http://lib.icimod.org/record/26505/files/c_attachment_601_5624.pdf
  47. Tutin TG et al. (Eds) (1964–1980) Flora Europaea, Cambridge University Presss, Cambridge, 1–5.
  48. Valdés B, Talavera S, Fernández-Galiano E (Eds) (1987) Flora vascular de Andalucía Occidental, 1–3. Ketres, Barcelona.
  49. van der Maabel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39(2): 97–114. doi: 10.1007/BF00052021
  50. van der Maarel E (2007) Transformation of cover-abundance values for appropriate numerical treatment – Alternatives to the proposals by Podani. Journal of Vegetation Science 18(5): 767–770. doi: 10.1111/j.1654-1103.2007.tb02592.x
  51. Wieczorek J, Döring M, De Giovanni R, Robertson T, Vieglais D (2009) Darwin Core Terms: A quick reference guide. http://rs.tdwg.org/dwc/terms/ [accessed 17.10.2014].
  52. Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core: An evolving community-developed biodiversity data standard. PLoS ONE 7(1): e29715EP, doi: 10.1371/journal.pone.0029715
  53. Zamora R, Bonet FJ (2011) Programa de Seguimiento del Cambio Global en Sierra Nevada: ciencia y tecnología para la gestión adaptativa. Boletín de la RED de seguimiento del cambio global en Parques Nacionales, 1: 18–24. http://reddeparquesnacionales.mma.es/parques/rcg/html/rcg_boletin_01.htm

Metadatos adicionales

Identificadores alternativos ff7d3d4a-6c31-4876-8339-a1794f7d0316
doi:10.15468/qhqzub
https://ipt.gbif.es/resource?r=borreguiles