MINKA_Medusa_a_la_vista observatorio de ciencia ciudadana

Occurrence Observation
Latest version published by Institut de Ciències del Mar (CSIC) on Jul 14, 2025 Institut de Ciències del Mar (CSIC)

Download the latest version of this resource data as a Darwin Core Archive (DwC-A) or the resource metadata as EML or RTF:

Data as a DwC-A file download 3,865 records in English (369 KB) - Update frequency: annually
Metadata as an EML file download in English (22 KB)
Metadata as an RTF file download in English (15 KB)

Description

EN MINKA Citizen Science Observatory is a community-based platform dedicated to environmental data collection, utilising geolocalized images, sounds and observations uploaded by citizens through a mobile app and website. This platform enables users to collaboratively validate observations, including expert taxonomic identification. Once data meets quality criteria, it achieves "research grade" status and is shared with global infrastructures like the Global Biodiversity Information Facility (GBIF). Recognized as a UN Acceleration Action for SDGs, MINKA contributes significantly to SDGs 11, 14, 15, and 17 by working with diverse stakeholders. The Medusa a la vista project, part of MINKA, focuses on documenting and monitoring observations of jellyfish and other stinging pelagic organisms in waters off the coast of Catalonia. This project is notable for the collection of marine data by MINKA platform users, collected near the coastline. ES El Observatorio de Ciencia Ciudadana MINKA es una plataforma de base colaborativa dedicada a la recopilación de datos de biodiversidad y ambientales, utilizando imágenes geolocalizadas, sonidos y observaciones compartidas por la ciudadanía a través de una aplicación móvil y un sitio web. Esta plataforma permite a los usuarios validar observaciones de forma colaborativa, incluida la identificación taxonómica de expertos. Una vez que los datos cumplen con los criterios de calidad, alcanzan el estado de "grado de investigación" y se comparten con infraestructuras globales como la Infraestructura Mundial de Datos sobre Biodiversidad (GBIF). MINKA es reconocida como una Acción de Aceleración de las Naciones Unidas para los ODS, contribuyendo a los ODS 11, 14, 15 y 17. El proyecto Medusa a la vista, integrado en MINKA, se centra en documentar y monitorizar el registro de observaciones de medusas y otros organismos pelágicos urticantes en aguas de la costa de Catalunya. Este proyecto destaca por la recopilación de datos marinos por parte de los usuarios de la plataforma MINKA tomados cerca de la línea de costa. CA L'Observatori de la Ciència Ciutadana MINKA es una plataforma basada en la comunitat dedicada a la recollida de dades ambientals, utilitzant imatges, sonidos i observacions geolocalitzades carregades pels ciutadans a través d'una aplicació mòbil i un lloc web. Aquesta plataforma permet als usuaris validar de manera col·laborativa les observacions, inclosa la identificació taxonòmica experta. Una vegada que les dades compleixen els criteris de qualitat, assoleixen l'estatus de "qualitat d'investigació" i es comparteixen amb infraestructures globals com el Global Biodiversity Information Facility (GBIF). Reconeguda com una acció d'acceleració de les Nacions Unides per als ODS, MINKA contribueix significativament als ODS 11, 14, 15 i 17 treballant amb diverses parts interessades. El projecte Medusa a la vista, integrat a MINKA, se centra a documentar i monitoritzar el registre d'observacions de meduses i altres organismes pelàgics urticants en aigües de la costa de Catalunya. Aquest projecte destaca per la recollida de dades marins per part dels usuaris de la plataforma MINKA presos a prop de la línia de costa.

Data Records

The data in this occurrence resource has been published as a Darwin Core Archive (DwC-A), which is a standardized format for sharing biodiversity data as a set of one or more data tables. The core data table contains 3,865 records.

1 extension data tables also exist. An extension record supplies extra information about a core record. The number of records in each extension data table is illustrated below.

Occurrence (core)
3865
Multimedia 
5634

This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for download in the downloads section. The versions table lists other versions of the resource that have been made publicly available and allows tracking changes made to the resource over time.

Versions

The table below shows only published versions of the resource that are publicly accessible.

How to cite

Researchers should cite this work as follows:

MINKA. EMBIMOS research group, Institut de Ciències del Mar (ICM-CSIC). Medusa a la vista citizen science project. ICM-CSIC: MINKA_Medusa_a_la_vista observatorio de ciencia ciudadana. Version 1.0. Occurrence dataset.

Rights

Researchers should respect the following rights statement:

The publisher and rights holder of this work is Institut de Ciències del Mar (CSIC). This work is licensed under a Creative Commons Attribution Non Commercial (CC-BY-NC 4.0) License.

GBIF Registration

This resource has been registered with GBIF, and assigned the following GBIF UUID: 247fd45a-0dd7-415d-9f47-699090f39cf5.  Institut de Ciències del Mar (CSIC) publishes this resource, and is itself registered in GBIF as a data publisher endorsed by GBIF Spain.

Keywords

Occurrence; Observation

Contacts

MINKA contributors EMBIMOS research group
  • Originator
  • Originator
  • Platform coordinator
Institut de Ciències del Mar (ICM-CSIC)
ES
MINKA EMBIMOS research group
  • Metadata Provider
  • Point Of Contact
  • Platform coordinator
Institut de Ciències del Mar (ICM-CSIC)
ES
Carlos Rodero
  • Custodian Steward
MINKA, EMBIMOS research group, Institut de Ciències del Mar (ICM-CSIC)
Karen Soacha
  • Custodian Steward
MINKA, EMBIMOS research group, Institut de Ciències del Mar (ICM-CSIC)
Xavier Salvador
  • Curator
MINKA, EMBIMOS research group, Institut de Ciències del Mar (ICM-CSIC)
Ana Álvarez
  • Programmer
MINKA, EMBIMOS research group, Institut de Ciències del Mar (ICM-CSIC)
Jaume Piera
  • Principal Investigator
MINKA, EMBIMOS research group, Institut de Ciències del Mar (ICM-CSIC)

Geographic Coverage

Coastline of Catalonia

Bounding Coordinates South West [40.527, 0.128], North East [42.436, 3.389]

Taxonomic Coverage

Biodiversity of jellyfish and other pelagic organisms on the coast of Catalonia.

Class Scyphozoa
Order Siphonophorae
Family Aeginidae, Aequoreidae, Rhopalonematidae, Pandeidae, Blackfordiidae, Carybdeidae, Corymorphidae, Cuninidae, Mitrocomidae, Eirenidae, Geryoniidae, Bougainvilliidae, Laodiceidae, Olindiasidae, Oceaniidae, Moerisiidae, Porpitidae

Temporal Coverage

Start Date / End Date 2008-04-05 / 2025-05-10

Project Data

The AMRIT project brings together 26 leading European institutions with a shared mission: to strengthen European Marine Research Infrastructures (MRIs) and enhance ocean observation capabilities. With over €5 million in funding from the EU, AMRIT is spearheading the harmonisation, standardisation, and advancement of ocean observing activities to support the development of the European Ocean Observing System (EOOS). At the heart of AMRIT’s efforts is the development of the EOOS Technical Support Centre (EOOS TSC), a comprehensive digital ecosystem designed to streamline operations at sea and improve data collection and monitoring. A critical component of AMRIT is modernising the flow of ocean observation data. Work Package 8 focuses on building APIs to automate metadata transfer from in situ instruments to the EOOS TSC dashboard. This work will expand existing data pipelines in European MRIs, extend coverage to previously unsupervised coastal nodes, and ensure standardisation across platforms. This harmonisation will foster collaboration between networks, enhance operational efficiency, and improve data accessibility. AMRIT will also address Essential Ocean Variables (EOVs) readiness through WP13-15. By examining the pathways from in situ observations to EOVs, the project will identify gaps in blended EOVs (data derived from multiple platforms) and develop best practices to enhance their usability. These improvements will bolster EOOS’s capacity to deliver actionable insights for ocean observation and research.

Title AMRIT Project
Identifier 101132013
Funding AMRIT is funded by the European Union’s Horizon Europe INFRA 2023-DEV-01 Programme under Grant Agreement No. 101132013

The personnel involved in the project:

MINKA EMBIMOS research group
  • Author

Sampling Methods

Sampling Methodology: The Medusa a la Vista project employs a participatory, unstructured sampling approach, leveraging the power of citizen science to gather data. This method involves the opportunistic collection of observations by volunteers across the coast of Catalonia. Sampling Description: Volunteers participating in the project contribute data through direct observations of jellyfish and other pelagic organisms on the coast of Catalonia. These contributions are critical for creating a comprehensive dataset that reflects the biodiversity and ecological conditions of the area. Data Validation Process: To ensure the reliability and accuracy of the dataset, each observation submitted by volunteers undergoes a rigorous quality control procedure. This validation process is designed to verify the correctness and relevance of the data collected, adhering to established standards for scientific data quality. Further details on the specific criteria and steps involved in the quality control procedure are described in the corresponding field.

Study Extent Sampling Area: the coast of Catalonia.
Quality Control Observations submitted to MINKA can qualify for Research Grade status if they are accompanied by a photo, the date of observation, and geographical coordinates. This status is conferred when a consensus on the species identification is reached within the MINKA community. When there's a division in opinion regarding the species observed, MINKA selects a consensus taxon from the suggestions, provided it garners agreement from over two-thirds of participating members. The methodology for determining the consensus taxon involves evaluating each suggested species and any broader categories it falls under. This evaluation calculates a score based on the proportion of identifications for that species against the total of all identifications, inclusive of later, more reserved identifications and those for unrelated species. The species with a score exceeding the two-thirds threshold, and with a minimum of two identifications, is deemed the community’s chosen taxon. In the case of observations at the gender level, those that are determined as "cannot be improved", and have two-thirds parts of the community in favor of the gender, will acquire Research Grade. Research Grade status may be withdrawn if community feedback indicates concerns on several fronts, including the authenticity of the organism's natural setting, the precision of the provided location and date, and adherence to MINKA's ethical standards, such as compliance with its terms of service and copyright laws. It's crucial to understand that data points such as observation dates and locations are primarily sourced from the observers and the collaborative efforts of the community for taxonomic identifications, without direct verification from MINKA's custodians. Therefore, the reliability of such information is not guaranteed. Specifically, while MINKA's system defaults to the WGS84 datum for geographical coordinates, observers have the flexibility to adjust these, raising the possibility of inaccuracies due to manual entries or alternate datum usage.

Method step description:

  1. Data Collection: The MINKA citizen observatory platform serves as the primary tool for data collection within the Medusa A la Vista project. Participants utilize this open platform to submit their observations, adhering to the stringent data quality control measures embedded in MINKA to ensure the accuracy and reliability of the data collected. Data Collaborative Validation: The MINKA platform employs a collaborative and standardized validation procedure. Observations that meet specific criteria are granted a "research grade" status, a designation that denotes their high quality and reliability. It is these research-grade observations that are subsequently published on GBIF. Data Sharing: In addition to the collaborative validation process, the project's dataset undergoes a rigorous review against established data quality standards, focusing on taxonomy, geography, and temporal accuracy, before its publication on GBIF. This ensures that the shared data meets the high-quality expectations of the global biodiversity data community.

Additional Metadata

Alternative Identifiers 10.15470/7tuxwt
https://ipt.gbif.es/resource?r=minka_medusa_a_la_vista