Fungal members of the rhizosphere microbiota of Quercus ilex subsp. ballota

サンプリング イベント
最新バージョン Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC) により出版 11月 3, 2023 Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC)

DwC-A形式のリソース データまたは EML / RTF 形式のリソース メタデータの最新バージョンをダウンロード:

DwC ファイルとしてのデータ ダウンロード 506 レコード English で (5 MB) - 更新頻度: unknown
EML ファイルとしてのメタデータ ダウンロード English で (23 KB)
RTF ファイルとしてのメタデータ ダウンロード English で (18 KB)

説明

The general objective of thE WP7 is to advance our understanding of the impacts of global change drivers - mainly climate change and exotic pathogens - on the above- and below-ground biodiversity of Mediterranean forests and silvopastoral agrosystems, and to use the resulting information to propose management tools aim to improve the resistance and resilience of these forests in scenarios of increasing abiotic and biotic stress. We will focus our research on forests and dehesas of evergreen Quercus species (Quercus suber and Quercus ilex) in Andalusia, due to their strategic ecological and economic importance and their current vulnerability status as a result of increasing aridity and the invasion of the aggressive exotic pathogen Phytophthora cinammomi.

データ レコード

この sampling event リソース内のデータは、1 つまたは複数のデータ テーブルとして生物多様性データを共有するための標準化された形式であるダーウィン コア アーカイブ (DwC-A) として公開されています。 コア データ テーブルには、506 レコードが含まれています。

拡張データ テーブルは1 件存在しています。拡張レコードは、コアのレコードについての追加情報を提供するものです。 各拡張データ テーブル内のレコード数を以下に示します。

Event (コア)
506
Occurrence 
221469

この IPT はデータをアーカイブし、データ リポジトリとして機能します。データとリソースのメタデータは、 ダウンロード セクションからダウンロードできます。 バージョン テーブルから公開可能な他のバージョンを閲覧でき、リソースに加えられた変更を知ることができます。

バージョン

次の表は、公にアクセス可能な公開バージョンのリソースのみ表示しています。

引用方法

研究者はこの研究内容を以下のように引用する必要があります。:

Gomez Aparicio L, García Garrido S (2023). Fungal members of the rhizosphere microbiota of Quercus ilex subsp. ballota. Version 2.1. Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC). Samplingevent dataset. https://doi.org/10.15470/jow7hd

権利

研究者は権利に関する下記ステートメントを尊重する必要があります。:

パブリッシャーとライセンス保持者権利者は Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC)。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF登録

このリソースをはGBIF と登録されており GBIF UUID: 0360980c-a656-482a-a689-3c1f1ee3f7d9が割り当てられています。   GBIF Spain によって承認されたデータ パブリッシャーとして GBIF に登録されているInstituto de Recursos Naturales y Agrobiología de Sevilla (CSIC) が、このリソースをパブリッシュしました。

キーワード

samplingEvent; Biodiversity; Edafic Biodiversity

連絡先

Lorena Gomez Aparicio
  • 連絡先
  • principal investigator
IRNAS-CSIC
Sevilla
ES
Sara García Garrido
  • 最初のデータ採集者
  • management technician
Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS)
  • Av. Reina Mercedes, 10. Sevilla
41012 Sevilla
Sevilla
ES
  • 954624711
Lorena Gomez Aparicio
  • 連絡先
  • Permanent Researcher
IRNAS-CSIC
Seville
Seville
ES
Cristina Zamora Ballesteros
  • 連絡先
  • postdoctoral researcher
Forest Genetics, Faculty of Environment and Natural Resources, Albert-Ludwigs-Universität Freiburg
Freiburg
DE
Marta Gil Martinez
  • 連絡先
  • Postdoctoral Researcher
University of Copenhagen
Copenhagen
DK

地理的範囲

Huelva (Spain), Sevilla (Spain) and Córdoba (Spain)

座標(緯度経度) 南 西 [-90, -180], 北 東 [90, 180]

生物分類学的範囲

説明がありません

Phylum Ascomycota, Basidiomycota, Glomeromycota, Mortierellomycota, Chytridiomycota

プロジェクトデータ

The general objective of thE WP7 is to advance our understanding of the impacts of global change drivers - mainly climate change and exotic pathogens - on the above- and below-ground biodiversity of Mediterranean forests and silvopastoral agrosystems, and to use the resulting information to propose management tools aim to improve the resistance and resilience of these forests in scenarios of increasing abiotic and biotic stress.

タイトル Sustainability for Mediterranean Hotspots in Andalusia integrating LifeWatch ERIC (SUMHAL). Working package 7: Improving sustainability of Mediterranean forests and silvopastoral agrosystems under climate change
識別子 LIFEWATCH-2019-09-CSIC-4, POPE 2014-2020
ファンデイング This study was funded by MICINN through European Regional Development Fund [SUMHAL, LIFEWATCH-2019-09-CSIC-13, POPE 2014-2020] and by the Spanish Ministry of Economy, Industry and Competitiveness [AGL2015-66048-C2-1-R; RTI2018-098015-B-I00]. To be referred from 2023 onwards as SUMHAL, LIFEWATCH-2019-09-CSIC-4, POPE 2014-2020.
Study Area Description We will focus our research on forests and dehesas of evergreen Quercus species (Quercus suber and Quercus ilex) in Andalusia, due to their strategic ecological and economic importance and their current vulnerability status as a result of increasing aridity and the invasion of the aggressive exotic pathogen Phytophthora cinammomi.
研究の意図、目的、背景など(デザイン) Soil at 5 to 20 cm depth attached to the secondary roots of every tree (Quercus ilex subsp. ballota) was collected, transported on ice and frozen at -80 ºC until processed. The DNA from each sample was extracted using DNeasy Power Soil Pro kit (QIAGEN) according to the manufacturer’s instructions. V3-V4 16S rRNA and ITS2 regions from Bacteria and Fungi kingdoms, respectively, were amplified. Likewise, in order to study the presence of Phytophthora species, amplicon libraries using the Phytophthora-specific primers that amplify ITS1 region were created using a nested PCR approach. The libraries were sequenced with Illumina MiSeq platform using 2 x 275 bp paired-end reads.

プロジェクトに携わる要員:

Lorena Gomez Aparicio

収集方法

The Illumina paired-end raw sequences were processed using the freely available bioinformatics software QIIME 2 version 2022.2.0 (Bolyen et al., 2019). The sequences from each target (bacteria, fungi or Phytophthora spp.) and each sequencing run were processed equally but separately throughout the analysis. The sequences were trimmed by implementing cutadapt (Martin, 2011) in QIIME 2 with q2-cutadapt plugin and trim-paired command. Chimeric sequences were identified and deleted after quality filtering and de-noising using the Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline implemented in QIIME 2 with q2-dada2 plugin and denoise-paired command (Callahan et al., 2016). The resulting amplicon sequence variants (ASVs) identified were curated using mumu by removing taxonomically redundant and erroneous ASVs. This involved constructing a database of the ASV sequences using makeblastdb application from the BLAST v.2.9.0 software suite, from which match lists were created using the blastn algorithm (query coverage: 80; percent identity cutoff: 84). These match lists and the ASV feature tables were input into the mumu algorithm to produce curated ASV tables. Singletons were excluded from the analysis. Taxonomic classification of the ASVs for bacteria and fungi was performed with pre-trained Naive Bayes classifiers and the q2-feature-classifier plugin (Bokulich et al., 2018). For the bacterial dataset, the SILVA v.138 database (Quast et al., 2013) was applied using a pre-trained classifier specifically curated for the sequenced 16SV3V4 region. In the case of the fungal dataset, the UNITE dynamic database v.8.3 (Abarenkov et al., 2021), which has been manually curated by experts in these particular fungal lineages, was used. Sequences assigned to mitochondria, chloroplasts and archaea were removed using the q2-taxa plugin in QIIME 2 and a taxonomy-based filtering step using the qiime taxa filter-seqs and qiime taxa filter-table commands.

Study Extent Soil at 5 to 20 cm depth attached to the secondary roots of every tree (Quercus ilex subsp. ballota) was collected, transported on ice and frozen at -80 ºC until processed. The DNA from each sample was extracted using DNeasy Power Soil Pro kit (QIAGEN) according to the manufacturer’s instructions. V3-V4 16S rRNA and ITS2 regions from Bacteria and Fungi kingdoms, respectively, were amplified. Likewise, in order to study the presence of Phytophthora species, amplicon libraries using the Phytophthora-specific primers that amplify ITS1 region were created using a nested PCR approach. The libraries were sequenced with Illumina MiSeq platform using 2 x 275 bp paired-end reads.

Method step description:

  1. The taxonomic assignment to the ASVs identified in the analysis of Phytohthora species was performed by generating a reference database from a combination of sequences from five different sources: the UNITE dynamic database v.8.3 (consisting of 58,440 eukaryotic sequences), reference sequences from phytophthoradb (http://www.phytophthoradb.org/; 340 sequences), reference sequences from Phytopthora-id (http://Phytophthora-id.org; 270 sequences), 174 sequences of Phytophthora spp. from the database generated in Riddell et al. (2019), and 39,701 sequences from Genbank matching the search "oomycota 'internal transcribed spacer'". In the latter case, the taxonomy for the Genbank accessions was obtained using the taxonomizr package (v 0.10.2) in R v 4.2.2. Finally, the reference sequence database, namely the combined fasta file (98,925 sequences), and the associated taxonomy description file were imported into QIIME 2 and used together with the qiime feature-classifier plugin and the classify-consensus-blast command. As a first step, the sequences of the potential Phytophthora ASVs were aligned against the custom reference database using strict homology parameters (query coverage: 90; percent identity cutoff: 99) to ensure that successful matches belong to a Phytophthora species. The unaligned ASVs were submitted to a second step with relaxed parameters (query coverage: 75; percent identity cutoff: 65). The third step consisted of comparing the unassigned ASVs from the second step to the entire NCBI non-redundant protein database (release-255) using default parameters. In the fourth step, the low confidence ASVs assigned in the second and third steps were concatenated, aligned with MAFFT, and used to construct a maximum likelihood (ML) phylogenetic tree using RAxML (v 8.2.12; Stamatakis, 2014). The tree was inferred employed a general time reversible substitution model with a computational work–around (GTRCAT) without rate heterogeneity with a correction for ascertainment bias. Statistical support was calculated by applying bootstrap runs in an automated approach (autoMRE), where RaxML executes a maximum of 1000 BS replicate searches, although convergence may occur earlier. The best-scoring ML tree of the search analysis was then visualized using the software FIGTREE version 1.4.4 (Rambaut, 2018).

書誌情報の引用

  1. Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R.H., Kõljalg, U., 2021. UNITE QIIME release for Fungi. Version 10.05.2021. [WWW Document]. UNITE Community. URL https://doi.plutof.ut.ee/doi/10.15156/BIO/1264708 (accessed 1.17.23)
  2. Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A., Gregory Caporaso, J., 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90. https://doi.org/10.1186/s40168-018-0470-z
  3. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9
  4. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869
  5. Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12. https://doi.org/10.14806/ej.17.1.200
  6. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590–D596. https://doi.org/10.1093/nar/gks1219
  7. Rambaut, A., 2018. FigTree.
  8. Riddell, C.E., Frederickson-Matika, D., Armstrong, A.C., Elliot, M., Forster, J., Hedley, P.E., Morris, J., Thorpe, P., Cooke, D.E.L., Pritchard, L., Sharp, P.M., Green, S., 2019. Metabarcoding reveals a high diversity of woody host-associated Phytophthora spp. In soils at public gardens and amenity woodlands in Britain. PeerJ 7, e6931. https://doi.org/10.7717/PEERJ.6931/SUPP-3
  9. Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

追加のメタデータ

代替識別子 10.15470/jow7hd
0360980c-a656-482a-a689-3c1f1ee3f7d9
https://ipt.gbif.es/resource?r=fungal-rhizo-quercus