說明
The line transect method was applied to assess the linear index of abundance and community structure of birds breeding in an area of Kalahari woodland used as range land for cattle. Four transects were designed along roads traversing the ranch. Each transect was 2.5 km long and was surveyed three times in 2014 and 2015. A total of 47 bird species were recorded but only 25-31 species were recorded on any particular transect. In the neighbouring pristine Kalahari woodland, the number of bird species on a12 km long transect was much higher (n = 88), and ranged in some sections (each 1.2 km in length) from 35 to 53. On any particular section, the number of dominant species ranged from 5 to 7, and their cumulative dominance on each section was similar, ranging from 53-56%, while the community dominance index ranged from 0.23 to 0.35. The most numerous species were the Cape turtle dove and emerald-spotted wood dove, which were dominant on all sections. Together they comprised 28% of all breeding birds. The avian community in the Kalahari woodland in Sachinga LDC did not differ from the neighbouring pristine woodland either in terms of species diversity or evenness. However, it differed significantly in terms of species richness, the proportion of main ecological guilds, and linear index of abundance of particular species. These differences could be mainly due to the structure of woody vegetation, which is much thicker in Sachinga than in the pristine woodland not used as pasture for cattle. The thickening of this vegetation on the ranch could have been caused by heavy grazing pressure by the cattle.
資料紀錄
此資源出現紀錄的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 47 筆紀錄。
此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。
版本
以下的表格只顯示可公開存取資源的已發布版本。
如何引用
研究者應依照以下指示引用此資源。:
Kopij, G., 2020. Abundance and community structure of birds breeding in Kalahari woodland used as rangeland. Museu de Ciències Naturals de Barcelona. Dataset/Occurrence: https://doi.org/10.15470/rova7r
權利
研究者應尊重以下權利聲明。:
此資料的發布者及權利單位為 Museu de Ciències Naturals de Barcelona。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.
GBIF 註冊
此資源已向GBIF註冊,並指定以下之GBIF UUID: 792a2342-1dbb-459b-84cd-e6eb1f9ba6c9。 Museu de Ciències Naturals de Barcelona 發佈此資源,並經由GBIF Spain同意向GBIF註冊成為資料發佈者。
關鍵字
Community ecology; Population densities; Rangeland management; Occurrence; Occurrence
聯絡資訊
- 元數據提供者 ●
- 出處 ●
- 連絡人
- 發布者
- Managing Editor AMZ
- Ps Picasso s/n
地理涵蓋範圍
The study was conducted in the Sachinga Livestock Development Centre of the Ministry of Agriculture of the Namibian Government. The centre is situated in NE Namibia, in the Zambezi region, about 40 km west of Katima Mulilo, between S17.39.40-S17.40.20 and E 24.23.55-E24.24.02. The Centre is a ranch of 3,243 ha. Most of the Sachinga LDC is covered by teak woodland, with smaller portion of Burkea-Kisat-False Mopane woodland and Omuramba grassland. The natural vegetation is well-preserved and represented by three classes of Kalahari woodland: 1) Colophospermum mopane , with two dominant associations: Nymphaea nouchali–Eragrostis rotifer which contains water species, and Combretum imberbe–Acacia nigrescens in association with sparse woodlands; 2) Baikiaea plurijuga woodland, comprising Guibourtia coleospherma–Burkea africana Association and Combretum collinum–Boscia albitrunca association; and 3) Baikiaea plurijuga – Terminalia sericea class with Pterocarpus angolensis–Diploryhnchus condylocarpon association, Dalbergia martinii–Berchemia discolor association, and Acacia fleckii–Baphia massaiensis association (Lushetile, 2009).
界定座標範圍 | 緯度南界 經度西界 [-24.24, 17.39], 緯度北界 經度東界 [-24.23, 17.4] |
---|
分類群涵蓋範圍
無相關描述
Family | Alcedinidae, Bucerotidae, Buphagidae, Caprimulgidae, Cisticolidae, Columbidae, Coraciidae, Dicruridae, Emberizidae, Estrildidae, Laniidae, Leiothrichidae, Macrosphenidae, Malaconotidae, Meropidae, Monarchidae, Muscicapidae, Nectariniidae, Numididae, Oriolidae, Paridae, Phasianidae, Phoeniculidae, Picidae, Platysteiridae, Pycnonotidae, Sturnidae, Trogonidae, Vangidae, Vangidae |
---|
時間涵蓋範圍
起始日期 / 結束日期 | 2014-09-03 / 2015-04-29 |
---|
計畫資料
In all parts of Africa, the expansion and intensity of agriculture pose a major threat to biodiversity through the conversion of natural habitats to agrocenosis, fragmentation and degradation. However, in some places, where selected biota were carefully surveyed in agrocenosis, it has been shown that they may also well preserve certain communities, for example birds (Kopij, 1998, 2006, 2013, 2015, 2018; Ratclife and Crowe, 2001; Balwig et al., 2006; Humle, 2007; Mulwa et al., 2012; Nadng’ang’a et al., 2013). This is especially evident when traditional agriculture is established within woodlands and wet savannas. One of the largest broadleaved savanna type forests in Namibia is the Kalahari woodland. It occupies about 600,000 km2 in Kavango West, Kavango East, Zambezi, and eastern parts of Ohangwena and Oshikoto regions (Mendelsohn et al., 2009). This ecoregion supports a rich and diverse fauna that includes large populations of elephant Loxodonta africana, black rhino Diceros bicornis, white rhino Cerathotherium simum, leopard Panthera pardus, and wild dog Lycaon pictus (G. Kopij, own data). Nearly 500 bird species have been recorded in this biome (Kopij, 2016, 2017). Due to the scarcity of surface water, until rather recently, the Kalahari woodland was sparsely occupied by people, but in recent decades, human populations have been increasing and the cattle industry is growing, with far-reaching effects on the environment and wildlife (Mendelsohn et al., 2009). Every year, at least 1,000,000 m3 of raw timber harvested from this forest is shipped from Walvis Bay port to China (G. Kopij, own data). It is therefore essential to closely monitor and measure the resulting threats to the biodiversity and the whole ecosystem. This may help to formulate strategies and policies to protect this precious biome from widespread fragmentation, destruction, and degradation. The purpose of this study was to estimate population densities and dominance of bird species occurring in Kalahari woodland used for cattle grazing and to compare these ecological parameters with the same habitat that remains in a pristine stage.
計畫名稱 | Abundance and community structure of birds breeding in Kalahari woodland used as rangeland |
---|---|
研究區域描述 | The study was conducted in the Sachinga Livestock Development Centre of the Ministry of Agriculture of the Namibian Government. The centre is situated in NE Namibia, in the Zambezi region, about 40 km west of Katima Mulilo (fig. 1), between S17.39.40-S17.40.20 and E 24.23.55-E24.24.02. The Centre is a ranch of 3,243 ha. The aim of the centre is in situ conservation, livestock improvement programmes and provision of breeding animals to the farmers, and farmer education. The centre is surrounded by communal areas with subsistence farming. Most of the Sachinga LDC is covered by teak woodland, with smaller portion of Burkea-Kisat-False Mopane woodland and Omuramba grassland. The natural vegetation is well-preserved and represented by three classes of Kalahari woodland: 1) Colophospermum mopane , with two dominant associations: Nymphaea nouchali–Eragrostis rotifer which contains water species, and Combretum imberbe–Acacia nigrescens in association with sparse woodlands; 2) Baikiaea plurijuga woodland, comprising Guibourtia coleospherma–Burkea africana Association and Combretum collinum–Boscia albitrunca association; and 3) Baikiaea plurijuga – Terminalia sericea class with Pterocarpus angolensis–Diploryhnchus condylocarpon association, Dalbergia martinii–Berchemia discolor association, and Acacia fleckii–Baphia massaiensis association (Lushetile, 2009). |
研究設計描述 | The American version of the transect line method (Bibby et al., 2012; Sutherland, 1996) was used to assess the population density and community structure of birds occurring in the ranch. A transect of 10 km in length and 100 m width (50 m on each side) was designed along roads traversing the ranch. The transect was divided into four equal sections (fig. 2). Each section was 2.5 km in length, and was surveyed three times (03/09/2014. 07/03/2015, 29/04/2015), each time in the same direction. Counts were conducted by the same observer, in the mornings, and in calm and cloudless weather conditions. Dominance is expressed as the percentage of the total number of pairs of a given species in relation to the total number of all pairs of all species recorded. A dominant species is defined as that comprising 5% or more of all individuals of all species recorded, and a subdominant species is defined as that comprising 2-4.99%. All birds showing breeding (e.g. transporting nesting material, constructing nests, feeding chicks etc.) or territorial (e.g. singing males) behaviour were recorded. Special attention was paid to simultaneously singing males, as they were important in determining the number of occupied territories. Special care was taken not to count the same birds twice, as this could overestimate the number of territories. The number of breeding pairs was estimated for each section on each transect. The maximumnumber of breeding pairs at each survey and on each section was assumed as the real number of breeding pairs. The total number of breeding pairs of each species on a particular transect was calculated as the total of maximum numbers recorded on each section within the transect. The following guilds were distinguished: diet (G, granivorous; I, insectivorous; F, frugivorous; N, nectarivorous); and nesting (T, in trees or shrubs; H, in holes; G, on the ground; V, in herbaceous vegetation). The following indices were used to characterise diversity, evenness and similarity between the communities: 1) Shannon’s diversity index: H’ = -∑ pi ln pi where: pi is the proportion of breeding pairs belonging to the ith species 2) Simpson’s diversity index: D = ((∑n(n-1))/N(N-1) where: n – total number of breeding pairs belonging to a given species, N – total number of breeding pairs of all species 3) Pielou’s evenness index: J’ = (-∑ pi ln pi)/ln S where pi is the proportion of breeding pairs belonging to the ith species; S – total number of species. J’ varies between 0 and 1. The lower the variation between species in a community, the higher the J’. 4) Community dominance index: DI = (n1 + n2)/N where n1, n2 – number of pairs of the two most abundant species, N – total number of pairs of all species. 5) Sörensen’s Coefficient: I = 2C/A+B where A – the number of bird species in one plot, B – the number of bird species in another plot, C – the number of bird species common to both plots. Systematics and nomenclature of bird species follow Hockey et al. (2005). Scientific names of bird species are listed in appendix 1. |
參與計畫的人員:
取樣方法
The American version of the transect line method (Bibby et al., 2012; Sutherland, 1996) was used to assess the population density and community structure of birds occurring in the ranch. A transect of 10 km in length and 100 m width (50 m on each side) was designed along roads traversing the ranch. The transect was divided into four equal sections (fig. 2). Each section was 2.5 km in length, and was surveyed three times (03/09/2014. 07/03/2015, 29/04/2015), each time in the same direction. Counts were conducted by the same observer, in the mornings, and in calm and cloudless weather conditions. Dominance is expressed as the percentage of the total number of pairs of a given species in relation to the total number of all pairs of all species recorded. A dominant species is defined as that comprising 5% or more of all individuals of all species recorded, and a subdominant species is defined as that comprising 2-4.99%.
研究範圍 | The study was conducted in the Sachinga Livestock Development Centre of the Ministry of Agriculture of the Namibian Government. The centre is situated in NE Namibia, in the Zambezi region, about 40 km west of Katima Mulilo (fig. 1), between S17.39.40-S17.40.20 and E 24.23.55-E24.24.02. The Centre is a ranch of 3,243 ha. The aim of the centre is in situ conservation, livestock improvement programmes and provision of breeding animals to the farmers, and farmer education. The centre is surrounded by communal areas with subsistence farming. Most of the Sachinga LDC is covered by teak woodland, with smaller portion of Burkea-Kisat-False Mopane woodland and Omuramba grassland. The natural vegetation is well-preserved and represented by three classes of Kalahari woodland: 1) Colophospermum mopane , with two dominant associations: Nymphaea nouchali–Eragrostis rotifer which contains water species, and Combretum imberbe–Acacia nigrescens in association with sparse woodlands; 2) Baikiaea plurijuga woodland, comprising Guibourtia coleospherma–Burkea africana Association and Combretum collinum–Boscia albitrunca association; and 3) Baikiaea plurijuga – Terminalia sericea class with Pterocarpus angolensis–Diploryhnchus condylocarpon association, Dalbergia martinii–Berchemia discolor association, and Acacia fleckii–Baphia massaiensis association (Lushetile, 2009). |
---|---|
品質控管 | All birds showing breeding (e.g. transporting nesting material, constructing nests, feeding chicks etc.) or territorial (e.g. singing males) behaviour were recorded. Special attention was paid to simultaneously singing males, as they were important in determining the number of occupied territories. Special care was taken not to count the same birds twice, as this could overestimate the number of territories. The number of breeding pairs was estimated for each section on each transect. The maximumnumber of breeding pairs at each survey and on each section was assumed as the real number of breeding pairs. The total number of breeding pairs of each species on a particular transect was calculated as the total of maximum numbers recorded on each section within the transect. |
方法步驟描述:
- The following indices were used to characterise diversity, evenness and similarity between the communities: 1) Shannon’s diversity index: H’ = -∑ pi ln pi where: pi is the proportion of breeding pairs belonging to the ith species 2) Simpson’s diversity index: D = ((∑n(n-1))/N(N-1) where: n – total number of breeding pairs belonging to a given species, N – total number of breeding pairs of all species 3) Pielou’s evenness index: J’ = (-∑ pi ln pi)/ln S where pi is the proportion of breeding pairs belonging to the ith species; S – total number of species. J’ varies between 0 and 1. The lower the variation between species in a community, the higher the J’. 4) Community dominance index: DI = (n1 + n2)/N where n1, n2 – number of pairs of the two most abundant species, N – total number of pairs of all species. 5) Sörensen’s Coefficient: I = 2C/A+B where A – the number of bird species in one plot, B – the number of bird species in another plot, C – the number of bird species common to both plots. Systematics and nomenclature of bird species follow Hockey et al. (2005). Scientific names of bird species are listed in appendix 1.
引用文獻
- Kopij, G., 2020. Abundance and community structure of birds breeding in Kalahari woodland used as rangeland. Arxius de Miscel·lania Zoologica, 18: 101-112, Doi: https://doi.org/10.32800/amz.2020.18.0101 https://doi.org/10.32800/amz.2020.18.0101
額外的詮釋資料
替代的識別碼 | 10.15470/rova7r |
---|---|
792a2342-1dbb-459b-84cd-e6eb1f9ba6c9 | |
https://ipt.gbif.es/resource?r=birds_kalahari_woodland |