AIMSurv Aedes Invasive Mosquito species harmonized surveillance in Europe. AIM-COST Action

Sampling event
最新版本 published by Universitat de les Illes Balears on 5月 19, 2022 Universitat de les Illes Balears

下載最新版本的 Darwin Core Archive (DwC-A) 資源,或資源詮釋資料的 EML 或 RTF 文字檔。

DwC-A資料集 下載 20,930 紀錄 在 English 中 (884 KB) - 更新頻率: 需要時
元數據EML檔 下載 在 English 中 (47 KB)
元數據RTF文字檔 下載 在 English 中 (25 KB)

說明

To increase harmonization among European entomologists, the Aedes Invasive Mosquito species (AIM) COST Action (https://www.aedescost.eu) was initiated in 2018 including three major objectives: i) developing Pan-European networking and collaboration in monitoring and surveillance of AIM species; ii) increasing preparedness and capacity to fight against AIMs by triggering optimisation and innovation in AIM control strategies; iii) dissemination, customising and communicating the AIM-COST Action outcomes. AIM-COST Action aims to promote data sharing and harmonization. A particularly important objective is to ensure that vector sampling is consistent and compatible throughout Europe so an accurate continental picture of vector distributions can be obtained. For this, AIM‐COST organised a training course in Cyprus in January 2020 on harmonising AIM surveillance across Europe. As a result of the course, trainers and trainees developed a protocol for surveillance of AIM species that can be applied across Europe. Forty-six teams from 24 countries (23 from Europe and one from North Africa) agreed on participating in the first-ever Pan-European surveillance of AIMs using a harmonized protocol (AIMSurv protocol; https://www.aedescost.eu/aimsurv). The AIMSurv protocol harmonized the sampling methods, frequency, minimum length of the sampling period and reporting. There were minimum requirements about the type of samples (i.e., eggs in oviposition traps) and recommended requirements for those teams having more resources (i.e., sampling of adults). Results from AIMSurv2020 are reported herein.

資料紀錄

此資源sampling event的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 20,930 筆紀錄。

亦存在 1 筆延伸集的資料表。延伸集中的紀錄補充核心集中紀錄的額外資訊。 每個延伸集資料表中資料筆數顯示如下。

Event (核心)
20930
Occurrence 
19743

此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。

版本

以下的表格只顯示可公開存取資源的已發布版本。

如何引用

研究者應依照以下指示引用此資源。:

Miranda Chueca M Á, Barceló Seguí C (2022): AIMSurv Aedes Invasive Mosquito species harmonized surveillance in Europe. AIM-COST Action. v2.3. Universitat de les Illes Balears. Dataset/Samplingevent. https://doi.org/10.15470/vs3677

權利

研究者應尊重以下權利聲明。:

此資料的發布者及權利單位為 Universitat de les Illes Balears。 To the extent possible under law, the publisher has waived all rights to these data and has dedicated them to the Public Domain (CC0 1.0). Users may copy, modify, distribute and use the work, including for commercial purposes, without restriction.

GBIF 註冊

此資源已向GBIF註冊,並指定以下之GBIF UUID: 03269e13-84ae-430f-990e-f11069413e36。  Universitat de les Illes Balears 發佈此資源,並經由GBIF Spain同意向GBIF註冊成為資料發佈者。

關鍵字

Samplingevent; Aedes; Mosquito; Invasive; Surveillance; Europe; sampling

聯絡資訊

Miguel Ángel Miranda Chueca
  • 元數據提供者
  • 作者
  • 出處
  • 連絡人
  • Senior Lecturer
Universitat de les Illes Balears
  • Cra. Valldemossa Km 7,5
07122 Palma
Illes Baleas
ES
  • 971173351
Carlos Barceló Seguí
  • 元數據提供者
  • 出處
  • 連絡人
  • Assistant professor
Universitat de les Illes Balears
  • Cra. Valldemossa Km 7,5
07122 Palma
Illes Baleas
ES
  • +34 971 17 31 56

地理涵蓋範圍

The AIMSurv harmonized surveillance of Aedes Invasive Mosquito species has been conducted in 23 European countries and one North African country: Albania, Austria, Croatia, Cyprus, France, Germany, Greece, Hungary, Italy, Kosovo, Luxembourg, Moldova, Montenegro, Morocco, North Macedonia, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Switzerland, The Netherlands and Turkey.

界定座標範圍 緯度南界 經度西界 [20.961, -17.227], 緯度北界 經度東界 [54.47, 47.637]

分類群涵蓋範圍

Aedes Invasive Mosquito species are included, namely: Aedes albopictus, Aedes japonicus and Aedes koreicus. Native species of mosquitos are also included: Aedes caspius, Aedes detritus, Aedes geniculatus, Anopheles maculipennis, Anopheles plumbeus, Culex hortensis, Culex pipiens, Culex tritaeniorhynchus, Culiseta annulata and Culiseta longiareolata. Unidentified species of the genera Aedes and Culex are also included.

Species Aedes albopictus (Asian tiger mosquito), Aedes koreicus (Korean bush mosquito), Aedes japonicus (Rock pool mosquito), Aedes caspius (Salt marsh mosquito), Aedes detritus (Salt marsh mosquito), Aedes geniculatus (Tree hole mosquito), Anopheles maculipennis, Anopheles plumbeus, Culex hortensis, Culex pipiens (Northern house mosquito), Culex tritaeniorhynchus, Culiseta annulata (Banded house mosquito), Culiseta longiareolata

計畫資料

The surveillance and control of Aedes albopictus and other Aedes Invasive Mosquito (AIM) species and the management of the risk of introduction and spread of Exotic Invasive Aedes Mosquito Borne Viruses (EAIMBV; e.g. dengue, DENV; yellow fever, YFV; chikungunya, CHIKV; Japanese encephalitis, JEV, and ZIKAV) in Europe require multidisciplinary research (e.g. entomological, epidemiological, environmental, climatic, demographic, mathematical, statistical, computational), cost-effective conventional/innovative methods, strong linkage between academics, public health (PH) professionals and policy-makers at the national and international level, as well as more a integrated private sector and a better informed and engaged society. These activities require an effective transboundary network of partners integrating all these stakeholder groups in Europe and beyond to identify and fill knowledge gaps, enhance research effectiveness, standardise, optimise and promote new country-tailored surveillance and control procedures, and improve dissemination.

計畫名稱 Aedes Invasive Moquitoes
辨識碼 CA17108
經費來源 COST (European Cooperation in Science and Technology)
研究區域描述 Harmonized surveillance of Aedes Invasive Mosquito species in Europe
研究設計描述 To increase harmonization among European entomologists, the Aedes Invasive Mosquito species (AIM) COST Action (https://www.aedescost.eu) was initiated in 2018 including three major objectives: i) developing Pan-European networking and collaboration in monitoring and surveillance of AIM species; ii) increasing preparedness and capacity to fight against AIMs by triggering optimisation and innovation in AIM control strategies; iii) dissemination, customising and communicating the AIM-COST Action outcomes. AIM-COST Action aims to promote data sharing and harmonization. A particularly important objective is to ensure that vector sampling is consistent and compatible throughout Europe so an accurate continental picture of vector distributions can be obtained. For this, AIM‐COST organised a training course in Cyprus in January 2020 on harmonising AIM surveillance across Europe. As a result of the course, trainers and trainees developed a protocol for surveillance of AIM species that can be applied across Europe. Forty-six teams from 24 countries (23 from Europe and one from North Africa) agreed on participating in the first-ever Pan-European surveillance of AIMs using a harmonized protocol (AIMSurv protocol; https://www.aedescost.eu/aimsurv). The AIMSurv protocol harmonized the sampling methods, frequency, minimum length of the sampling period and reporting. There were minimum requirements about the type of samples (i.e., eggs in oviposition traps) and recommended requirements for those teams having more resources (i.e., sampling of adults). Results from AIMSurv2020 are reported herein.

參與計畫的人員:

Miguel Ángel Miranda Chueca
Carlos Barceló
Daniele Arnoldi
Xenia Augsten
Karin Bakran-Lebl
George Balatsos
Mikel Bengoa
  • 內容提供者
Philippe Bindler
  • 內容提供者
Kristina Boršová
Daniel Bravo-Barriga
Viktória Čabanová
Beniamino Caputo
  • 內容提供者
Maria Christou
Sarah Delacour
Roger Eritja
Ouafaa Fassi-Fihri
  • 內容提供者
Martina Ferraguti
Eleonora Flacio
Eva Frontera
Hans Peter Fuehrer
Ana L. García-Pérez
Pantelis Georgiades
Sandra Gewehr
Fátima Goiri
Mikel Alexander González
Martin Gschwind
  • 內容提供者
Rafael Gutiérrez-López
  • 內容提供者
Cintia Horváth
  • 內容提供者
Adolfo Ibáñez-Justicia
Viola Jani
  • 內容提供者
Përparim Kadriaj
Katja Kalan
Mihaela Kavran
Ana Klobucar
Kornélia Kurucz
Javier Lucientes
  • 內容提供者
Renke Lühken
Sergio Magallanes
Giovanni Marini
Angeliki F. Martinou
  • 內容提供者
Alice Michelutti
  • 內容提供者
Andrei Daniel Mihalca
  • 內容提供者
Tomás Montalvo
  • 內容提供者
Fabrizio Montarsi
  • 內容提供者
Spiros Mourelatos
Nesade Muja-Bajraktari
Pie Müller
  • 內容提供者
Gregoris Notarides
  • 內容提供者
Hugo Costa Osório
José A. Oteo
Kerem Oter
Igor Pajović
John R.B. Palmer
Suncica Petrinic
  • 內容提供者
Cristian Răileanu
  • 內容提供者
Christian Ries
Elton Rogozi
Ignacio Ruiz-Arrondo
Isis Sanpera-Calbet
Nebojša Sekulić
  • 內容提供者
Kivanc Sevim
Kurtesh Sherifi
Cornelia Silaghi
  • 內容提供者
Manuel Silva
Nikolina Sokolovska
Zoltán Soltész
Tatiana Sulesco
Jana Šušnjar
  • 內容提供者
Steffanie Teekema
  • 內容提供者
Andrea Valsecchi
  • 內容提供者
Marlen Ines Vasquez
  • 內容提供者
Enkelejda Velo
Antonios Michaelakis
William Wint
Dušan Petrić
Francis Schaffner
Alessandra della Torre
  • 研究主持人

取樣方法

The sampling protocol for Pan-European surveillance of AIM species (AIMSurv harmonized the sampling methods, frequency, minimum length of the sampling period and the form of reporting. There were minimum requirements (Minimum Requirements Protocol; MRP) about the type of samples (i.e., eggs in ovitraps), number of sampled sites, number of traps and frequency of collecting samples. Teams with more resources were suggested to follow a Recommended protocol (RP) to either increase number of samplings and/ or, additionally to eggs, sample other life stages such as adults. The use of a common platform for data collection was also suggested, the VECMAP® App system was made freely available by Avia-GIS to all participants during AIMSurv activities. For the MRP, all teams performed the survey in three sampling sites separated by 10 Km or more. Five oviposition traps (ovitraps) per site were placed and separated by 15 to 100 m. The type of ovitrap was selected by each team according to their availability in the region but usually consisted of 250 to 1000 ml capacity black containers filled with tap water. One scratched wooden tongue depressor (1.7x15 cm) per ovitrap, was used as a substrate for oviposition. Some teams used similar size pieces of Masonite board (when part of a pre-existing surveillance network). The selected sampling sites shared a similar environment, when possible, in urban and/or peri-urban areas (e.g., a garden of single-family houses in residential urban/peri-urban areas, public parks near residential areas, recreational areas). The frequency of sample collection was biweekly over a minimum of three months that must include the population peak of the targeted AIM species (e.g., in Spain: from September to November). The following parameters were recorded: latitude and longitude of the position of each trap; the name of municipality/county/district (according to the country) and locality; start and end date of each trapping event (e.g., a period of 14 days / 2 weeks for ovitraps); land use according to VECMAP® categories (urban, peri-urban and others); count of each life stage collected, including absences (0 values); finally, trap status (e.g., missing, broken, empty, etc.) per trapping event was also recorded. The more ambitious RP sampling included additional sampling sites sharing similar or different environments (e.g., urban areas, rural areas, high altitude areas, etc), again with five ovitraps per site, weekly sampling frequency and sampling length during the whole seasonality of the AIM species including start, peak and end of the mosquito season (e.g., May to November in Central Europe). In addition, sampling adults using one BG-Sentinel™ (Biogents, Germany) trap baited with BG-Lure™ (Biogents, Germany) and/or CO2 per site under a sampling frequency of one trap/night per week was also included. The use of VECMAP® to report the data was also suggested in the RP. Parameters to record were the same as for the MRP plus the daily or weekly record of meteorological parameters (maximum, minimum, average temperature) per site, collected using data loggers or local weather stations. For the processing of samples, collected eggs of AIM species were counted. For every location, a sub-sample (2 out of 5 ovitrap substrates per locality) of eggs was reared to confirm the species by larva/adult morphology, particularly in those areas where several AIM species are present (i.e., Ae. albopictus and Ae. japonicus). Alternatively, species were identified using MALDI-TOF MS or other molecular methods (e.g., DNA sequencing). Adult of AIM species collected in BG-Sentinel™ were identified by morphology, sexed and counted. Suggested identification keys were ECDC (2012) and MosKeyTool V2.1 (Gunay et al. 2018). Samples of adults were preserved in 96% ethanol and/or cold preserved at -20/-80 °C to confirm identification if needed (e.g., via molecular tools).

研究範圍 Temporal coverage: Sampling period was different for each team but covering the seasonal peak of the targeted AIM species was mandatory. Considering all participating teams, the first team started at 15/01/2020 and the last team ended sampling at 31/12/20. In general, sampling was conducted between May-June and October-November for most of the teams. Geographic coverage: 23 European countries and one African country: Albania, Austria, Croatia, Cyprus, France, Germany, Greece, Hungary, Italy, Kosovo, Luxembourg, Moldova, Montenegro, Morocco, North Macedonia, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Switzerland, The Netherlands and Turkey.
品質控管 All participants in AIMSurv reported data using a harmonized template. All data reported has been curated and the terminology has been homogenized. Data has been validated using the validator available in GBIF.

方法步驟描述:

  1. The sampling protocol for Pan-European surveillance of AIM species (AIMSurv harmonized the sampling methods, frequency, minimum length of the sampling period and the form of reporting. There were minimum requirements (Minimum Requirements Protocol; MRP) about the type of samples (i.e., eggs in ovitraps), number of sampled sites, number of traps and frequency of collecting samples. Teams with more resources were suggested to follow a Recommended protocol (RP) to either increase number of samplings and/ or, additionally to eggs, sample other life stages such as adults. The use of a common platform for data collection was also suggested, the VECMAP® App system was made freely available by Avia-GIS to all participants during AIMSurv activities. For the MRP, all teams performed the survey in three sampling sites separated by 10 Km or more. Five oviposition traps (ovitraps) per site were placed and separated by 15 to 100 m. The type of ovitrap was selected by each team according to their availability in the region but usually consisted of 250 to 1000 ml capacity black containers filled with tap water. One scratched wooden tongue depressor (1.7x15 cm) per ovitrap, was used as a substrate for oviposition. Some teams used similar size pieces of Masonite board (when part of a pre-existing surveillance network). The selected sampling sites shared a similar environment, when possible, in urban and/or peri-urban areas (e.g., a garden of single-family houses in residential urban/peri-urban areas, public parks near residential areas, recreational areas). The frequency of sample collection was biweekly over a minimum of three months that must include the population peak of the targeted AIM species (e.g., in Spain: from September to November). The following parameters were recorded: latitude and longitude of the position of each trap; the name of municipality/county/district (according to the country) and locality; start and end date of each trapping event (e.g., a period of 14 days / 2 weeks for ovitraps); land use according to VECMAP® categories (urban, peri-urban and others); count of each life stage collected, including absences (0 values); finally, trap status (e.g., missing, broken, empty, etc.) per trapping event was also recorded. The more ambitious RP sampling included additional sampling sites sharing similar or different environments (e.g., urban areas, rural areas, high altitude areas, etc), again with five ovitraps per site, weekly sampling frequency and sampling length during the whole seasonality of the AIM species including start, peak and end of the mosquito season (e.g., May to November in Central Europe). In addition, sampling adults using one BG-Sentinel™ (Biogents, Germany) trap baited with BG-Lure™ (Biogents, Germany) and/or CO2 per site under a sampling frequency of one trap/night per week was also included. The use of VECMAP® to report the data was also suggested in the RP. Parameters to record were the same as for the MRP plus the daily or weekly record of meteorological parameters (maximum, minimum, average temperature) per site, collected using data loggers or local weather stations. For the processing of samples, collected eggs of AIM species were counted. For every location, a sub-sample (2 out of 5 ovitrap substrates per locality) of eggs was reared to confirm the species by larva/adult morphology, particularly in those areas where several AIM species are present (i.e., Ae. albopictus and Ae. japonicus). Alternatively, species were identified using MALDI-TOF MS or other molecular methods (e.g., DNA sequencing). Adult of AIM species collected in BG-Sentinel™ were identified by morphology, sexed and counted. Suggested identification keys were ECDC (2012) and MosKeyTool V2.1 (Gunay et al. 2018). Samples of adults were preserved in 96% ethanol and/or cold preserved at -20/-80 °C to confirm identification if needed (e.g., via molecular tools).

收藏資料

蒐藏名稱 AIMSurv
標本保存方法 Alcohol,  Deep frozen

額外的詮釋資料

替代的識別碼 10.15470/vs3677
03269e13-84ae-430f-990e-f11069413e36
https://ipt.gbif.es/resource?r=aimsurv